【ML】Image Augmentation)的作用、使用方法及其分类

图像增强(Image Augmentation)的作用、使用方法及其分类

      • 1. 图像增强的定义
      • 2. 图像增强的作用
      • 3. 什么时候使用图像增强?
      • 4. 图像增强详细方法分类梳理
      • 4.1 图像增强方法列表
      • 4.2 边界框增强方法
      • 5. 参考资料

  1. yolov3(一:模型训练)
  2. yolov3(二:车牌识别)
  3. yolov3(四:车牌识别及算法解析)

1. 图像增强的定义

图像增强(Image Augmentation)是一种技术,它通过对原始图像进行各种变换或操作,生成新的图像数据。这些变换包括旋转、翻转、裁剪、调节亮度、添加噪声等。图像增强主要用于扩充训练数据集,以提高机器学习模型的鲁棒性和泛化能力

2. 图像增强的作用

  1. 扩充数据集:在数据有限的情况下,图像增强可以人为增加数据量,生成更多的训练样本,从而避免模型过拟合。

  2. 提高模型鲁棒性:通过对图像进行不同形式的变换,可以让模型学习到更具多样性的特征,从而提高模型在面对未知数据时的表现。例如,旋转、翻转可以让模型更好地应对不同的视角变化。

  3. 模拟真实场景:图像增强技术可以模拟现实世界中可能出现的各种情况,如光照变化、噪声干扰、模糊等,增强模型的实用性。

  4. 防止过拟合:在训练模型时,过拟合是一个常见问题,特别是在数据集较小的情况下。通过图像增强,可以有效地降低模型对特定样本的依赖性,提升模型的泛化能力。

3. 什么时候使用图像增强?

  1. 数据集较小:当训练数据不足时,图像增强是扩充数据量的有效方法。

  2. 模型过拟合:如果模型在训练集上表现很好,但在验证集或测试集上表现较差,图像增强可以帮助缓解过拟合问题。

  3. 多样性不足:当数据集中的样本具有较大相似性,或缺乏不同环境、不同条件下的样本时,图像增强可以增加数据的多样性。

  4. 应用场景复杂:当模型应用于复杂或多变的场景时,通过图像增强可以提前模拟这些变化,提高模型的适应能力。

总的来说,图像增强是提升模型性能的重要手段,特别是在数据有限或需要面对复杂场景时尤为有用。
在这里插入图片描述

4. 图像增强详细方法分类梳理

4.1 图像增强方法列表

增强方法详细说明特点
Flip将图像水平翻转或垂直翻转,使图像左右或上下颠倒。对称性增强,避免模型依赖方向信息。
90° Rotate将图像按90度、180度或270度旋转。增强模型对不同旋转角度的鲁棒性。
Crop裁剪图像的某一部分以生成一个新的子图像。关注特定区域,防止模型对背景信息的依赖。
Rotation任意角度旋转图像而不是90度的倍数。提供多样化的视角,增强模型对不同角度的适应性。
Shear对图像进行倾斜变换,将图像的形状进行拉伸或扭曲。增强模型对几何变形的鲁棒性。
Grayscale将图像转换为灰度图像,仅保留亮度信息。去除颜色信息,关注亮度和形状特征。
Hue改变图像的色调,调整图像的整体颜色。模拟不同的光照条件,增强模型对颜色变化的适应性。
Saturation调整图像的饱和度,使颜色更加鲜艳或更加黯淡。增强模型对颜色强度变化的鲁棒性。
Exposure调整图像的曝光度,使图像变得更亮或更暗。增强模型对不同光照条件的适应性。
Blur对图像应用模糊滤镜,降低图像的清晰度。模拟相机对焦不准确的情况,增强模型的鲁棒性。
Noise向图像中添加随机噪声,如高斯噪声或椒盐噪声。增强模型对噪声的鲁棒性,模拟传感器噪声或压缩失真。
Cutout在图像上随机遮挡一个或多个区域,用纯黑色或其他颜色填充遮挡区域。使模型更关注整体特征,避免过度依赖某一特定区域。
Mosaic将多个图像组合在一起生成一个新图像,通常将图像分成不同的区域,然后重新排列。提供更多样的训练样本,增加模型的泛化能力。

4.2 边界框增强方法

增强方法详细说明特点
Flip对图像中的边界框进行水平或垂直翻转。保持目标物体的定位不变,但方向改变。
90° Rotate将包含边界框的图像旋转90度。增强模型对不同旋转角度的目标检测能力。
Crop裁剪图像和相应的边界框。可以生成更加局部的检测目标,防止模型依赖背景信息。
Rotation任意角度旋转图像中的目标和边界框。增加检测目标的多样性和角度变化的适应性。
Shear对图像及其边界框进行剪切变换。提供对变形目标的检测能力,增强模型的几何鲁棒性。
Brightness调整图像的亮度,同时对边界框不产生影响。增强模型在不同光照条件下的目标检测能力。
Exposure调整图像的曝光度,处理高曝光或低曝光图像中的目标检测。增强模型对不同曝光条件的目标检测能力。
Blur对图像进行模糊处理,目标仍然被边界框标记。模拟相机对焦不准的情况,增强模型的鲁棒性。
Noise向图像中添加随机噪声,仍保持边界框标注的准确性。增强模型在噪声环境下的目标检测能力。

这些增强方法有助于在图像分类、目标检测等任务中生成更多样化的训练样本,增强模型的鲁棒性和泛化能力。

5. 参考资料

  1. Introducing Bounding Box Level Augmentations

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/403282.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

K8S资源之PVPVC

概念 类似于Docker的数据卷挂载,将Pod中重要的文件挂载到宿主机上,如果Pod发生崩溃等情况自愈时,保证之前存储的数据没有丢失。 如上图中,将各个Pod中的目录挂载到存储层,如果Pod宕机后自愈均从存储层获取之前的数据…

00_remipi_软件评估记录

1.CPU 1.1 查看CPU信息命令 cat /proc/cpuinfo * processor: 系统中逻辑处理核心的编号,对于多核处理器则可以是物理核,或者使用超线程技术虚拟的逻辑核。 BogoMIPS: 在系统内核启动时粗略测算的CPU每秒运行百万条指令数(Million Instruct…

Selenium 自动化测试平台

1.介绍 Selenium 是一套 Web网站 的程序自动化操作 解决方案。 通过它,我们可以写出自动化程序,像人一样在浏览器里操作web界面。 比如点击界面按钮,在文本框中输入文字 等操作。 而且还能从web界面获取信息。 比如获取 火车、汽车票务信息…

网络编程,网络协议,UDP协议

网络: 1.协议:通信双方约定的一套标准 2.国际网络通信协议标准: 1.OSI协议: 应用层 发送的数据内容 表示层 数据是否加密 会话层 是否建立会话连接 传输层 …

mpls静态lsp实验

实验需求 R1、R2和R3之间已经部署了IGP协议,故192.168.10.0/24与192.168.20.0/24网络之间已经能够互访。现要求通过配置 静态LSP,使得这两个网络之间能基于MPLS进行互访,标签分配如图 组网图 实验思路 1、R1、R2和R3之间已经部署了IGP协议…

泰坦尼克号 - 从灾难中学习机器学习/Titanic - Machine Learning from Disaster(kaggle竞赛)第二集(加载数据)

此次目的: hello大家好,俺是没事爱瞎捣鼓又分享欲爆棚的叶同学!!!准备出几期博客来记录我学习kaggle数据科学入门竞赛的过程,顺便也将其中所学习到的知识分享出来。这是第一集(了解赛题&#x…

宝塔部署Django项目(华为云)

1、登录华为云: 2、点击远程登录: 3、打开宝塔网址(华为云选的是centos) 4、在华为终端复制指令点击运行: 会显示安装完成,出现一个页面记录一下,方便以后登录: 5、复制外网面板地…

【Linux线程】线程的深度解析(线程是什么?线程与进程区别是什么?)

目录 一、前言 二、 什么是线程 💧线程的引入💧 💧线程的基本概念 💧 💧线程的理解 💧 💧进程与线程的关系💧 💧程序如何划分(重拾页表、见一下LWP&…

基于springboot养老院管理系统pf

TOC springboot332基于springboot养老院管理系统pf 第1章 绪论 1.1选题动因 当前的网络技术,软件技术等都具备成熟的理论基础,市场上也出现各种技术开发的软件,这些软件都被用于各个领域,包括生活和工作的领域。随着电脑和笔记…

Python实战项目:天气数据爬取+数据可视化(完整代码)

一、选题的背景 随着人们对天气的关注逐渐增加,天气预报数据的获取与可视化成为了当今的热门话题,天气预报我们每天都会关注,天气情况会影响到我们日常的增减衣物、出行安排等。每天的气温、相对湿度、降水量以及风向风速是关注的焦点。通过…

实战OpenCV之图像显示

基础入门 OpenCV提供的功能非常多,图像显示是最基础也是最直观的一部分。它让我们能够直观地看到算法处理后的效果,对于调试和验证都至关重要。在OpenCV中,图像显示主要依赖于以下四个关键的数据结构和函数。 1、Mat类。这是OpenCV中最基本的…

LeetCode - LCR 146- 螺旋遍历二维数组

LCR 146题 题目描述: 给定一个二维数组 array,请返回「螺旋遍历」该数组的结果。 螺旋遍历:从左上角开始,按照 向右、向下、向左、向上 的顺序 依次 提取元素,然后再进入内部一层重复相同的步骤,直到提取完…

MySQL数据库入门,pycharm连接数据库—详细讲解

一.安装MySQL 1.常用MySQL5.7,首先安装MySQL, (一) (二) (三) (四) (五) 2.配置环境变量 打开MySQL安装路径,在其中找到…

ArcGis在线地图插件Maponline(好用版)

ArcGis加载插件,可在线浏览谷歌地图、天地图、高德地图、必应地图等多种,包含街道、影像、标注地图等信息(谷歌地图需自备上网手段),免费注册账号即可使用,可加载无水印底图。 与大地2000坐标无需配准直接使…

洛杉物理服务器怎么样?

洛杉矶作为美国科技和互联网的重要中心,物理服务器的质量通常非常高,可以提供卓越的性能、强大的安全性、多样的配置选项和专业的服务支持。以下是对洛杉物理服务器的详细介绍。 1. 优质的性能 稳定的网络连接:洛杉矶物理服务器位于先进的数据…

day32+学习记录

一.算法练习 509.斐波那契数 斐波那契数 (通常用 F(n) 表示)形成的序列称为 斐波那契数列 。该数列由 0 和 1 开始,后面的每一项数字都是前面两项数字的和。也就是: F(0) 0,F(1) 1 F(n) F(n - 1) F(n - 2)&#xf…

一键运行RocketMQ5.3和Dashboard

一键运行RocketMQ5.3和Dashboard 目录 一键运行RocketMQ5.3和Dashboard通过Docker Compose 来一键启动运行的容器包括docker-compose.yml文件运行命令启动本地效果查看 参考信息 通过Docker Compose 来一键启动 运行的容器包括 NameServerBrokerProxyDashBoard docker-compo…

关于Qt的系统总结

查看详情http://100bcw.com/qt6.htm 编译环境与开发流程 开发QT有两种IDE可以使用,一种是使用 VS + Qt 的插件,另一种就是使用QtCreator工具。前一种是微软的工具,用的都比较多容易上手,缺点是信号槽的支持不太好,需要手写,不能自动生成,另外可能有中文编码的问题。后一…

c语言 图片.bmp读写示例

1 图片.bmp数据结构 BMP(Bitmap)文件格式是一种简单的位图图像格式,其数据结构分为几个主要部分:文件头、信息头、调色板(可选)和像素数据。下面是各部分的详细说明。 文件头(File Header&…

东晟时尚服饰文化传承与发展研发中心成立

近期,东晟时尚创新科技(北京)有限公司宣布成立东晟时尚服饰文化传承与发展研发中心,此举标志着公司在促进中国传统文化与现代时尚产业结合方面迈出了关键步伐。 作为一家在时尚科技推广和设计研发应用服务领域具有战略眼光的企业&…