大杂烩!注意力机制+时空特征融合!组合模型集成学习预测!CNN-LSTM-Attention-Adaboost多变量负荷预测

大杂烩!注意力机制+时空特征融合!组合模型集成学习预测!CNN-LSTM-Attention-Adaboost多变量负荷预测

目录

    • 大杂烩!注意力机制+时空特征融合!组合模型集成学习预测!CNN-LSTM-Attention-Adaboost多变量负荷预测
      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现CNN-LSTM-Attention-Adaboost时间序列预测,卷积长短期记忆神经网络注意力机制结合AdaBoost多变量时间序列预测(负荷预测);注意力机制+时空特征融合!组合模型集成学习预测!CNN-LSTM-Attention-Adaboost多变量负荷预测;

CNN-LSTM-Attention-AdaBoost是一种将CNN-LSTM-Attention和AdaBoost两种机器学习技术结合起来使用的方法,旨在提高模型的性能和鲁棒性。具体而言,AdaBoost则是一种集成学习方法,它将多个弱学习器组合起来形成一个强学习器,其中每个学习器都是针对不同数据集和特征表示训练的。CNN-LSTM-Attention-AdaBoost算法的基本思想是将CNN-LSTM-Attention作为基模型,利用AdaBoost算法对其进行增强。具体而言,我们可以训练多个CNN-LSTM-Attention模型,每个模型使用不同的数据集和特征表示,然后将它们的预测结果组合起来,形成一个更准确和鲁棒的模型。

2.运行环境为Matlab2023b;

3.数据集excel数据,多输入单输出时间序列数据,main.m为主程序,运行即可,所有文件放在一个文件夹;

4.命令窗口输出R2、MAE、MAPE、MSE、RMSE多指标评价;

在这里插入图片描述

程序设计

  • 完整程序和数据获取方式私信博主回复组合模型集成学习预测!CNN-LSTM-Attention-Adaboost多变量负荷预测(Matlab)

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);
%  数据归一化
[p_train, ps_input] = mapminmax(P_train, 0, 1);
p_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  数据平铺for i = 1:size(P_train,2)trainD{i,:} = (reshape(p_train(:,i),size(p_train,1),1,1));
endfor i = 1:size(p_test,2)testD{i,:} = (reshape(p_test(:,i),size(p_test,1),1,1));
endtargetD =  t_train;
targetD_test  =  t_test;numFeatures = size(p_train,1);layers0 = [ ...% 输入特征sequenceInputLayer([numFeatures,1,1],'name','input')   %输入层设置sequenceFoldingLayer('name','fold')         %使用序列折叠层对图像序列的时间步长进行独立的卷积运算。% CNN特征提取convolution2dLayer([3,1],16,'Stride',[1,1],'name','conv1')  %添加卷积层,641表示过滤器大小,10过滤器个数,Stride是垂直和水平过滤的步长batchNormalizationLayer('name','batchnorm1')  % BN层,用于加速训练过程,防止梯度消失或梯度爆炸reluLayer('name','relu1')       % ReLU激活层,用于保持输出的非线性性及修正梯度的问题% 池化层maxPooling2dLayer([2,1],'Stride',2,'Padding','same','name','maxpool')   % 第一层池化层,包括3x3大小的池化窗口,步长为1,same填充方式% 展开层sequenceUnfoldingLayer('name','unfold')       %独立的卷积运行结束后,要将序列恢复%平滑层flattenLayer('name','flatten')lstmLayer(25,'Outputmode','last','name','hidden1') dropoutLayer(0.1,'name','dropout_1')        % Dropout层,以概率为0.2丢弃输入selfAttentionLayer(2,16,"Name","selfattention")                           % 多头自注意力机制层fullyConnectedLayer(1,'name','fullconnect')   % 全连接层设置(影响输出维度)(cell层出来的输出层) %regressionLayer('Name','output')    ];lgraph0 = layerGraph(layers0);
lgraph0 = connectLayers(lgraph0,'fold/miniBatchSize','unfold/miniBatchSize');

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/127931217
[2] https://blog.csdn.net/kjm13182345320/article/details/127418340

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/404431.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

银河麒麟V10如何安装本地deb软件包?(以安装wps为例)

银河麒麟V10如何安装本地deb软件包?(以安装wps为例) 一、准备二、安装三、总结 💖The Begin💖点点关注,收藏不迷路💖 在银河麒麟V10中安装本地.deb软件包,虽然apt主要用于管理仓库中…

LeetCode:3148. 矩阵中的最大得分(DP Java)

目录 3148. 矩阵中的最大得分 题目描述: 实现代码与解析: DP 原理思路: 3148. 矩阵中的最大得分 题目描述: 给你一个由 正整数 组成、大小为 m x n 的矩阵 grid。你可以从矩阵中的任一单元格移动到另一个位于正下方或正右侧…

删除微博博文js脚本实现

我当前的时间:2024.8.18 脚本可以直接使用,随着时间推移,微博页面元素可能会有变动。 思路:javascript 模拟手动点击,下滑,并且删除博文 首先登录微博,进入自己的博文界面如下: 进…

Git使用方法(三)---简洁版上传git代码

1 默认已经装了sshWindows下安装SSH详细介绍-CSDN博客 2 配置链接github的SSH秘钥 1 我的.ssh路径 2 进入路径cd .ssh 文件 3 生成密钥对 ssh-keygen -t rsa -b 4096 (-t 秘钥类型 -b 生成大小) 输入完会出现 Enter file in which to save the key (/c/Users/Administrator/…

使用DOM破坏启动xss

目录 实验环境: 分析: 找破坏点: 查看源码找函数: 找到了三个方法,loadComments、escapeHTM 、displayComments loadComments escapeHTM displayComments: GOGOGO 实验环境: Lab: Exp…

MySQL库表的基本操作

目录 1.库的操作1.1 创建数据库1.2字符集和校验规则①查看系统默认字符集以及校验规则②查看数据库支持的字符集③查看数据库支持的字符集校验规则④校验规则对数据库的影响 1.3操纵数据库①查看数据库②显示创建的数据库的语句③修改数据库④数据库删除⑤备份和恢复⑥还原注意…

C库函数signal()信号处理

signal()是ANSI C信号处理函数&#xff0c;原型如下&#xff1a; #include <signal.h>typedef void (*sighandler_t)(int); sighandler_t signal(int signum, sighandler_t handler); signal()将信号signum的处置设置为handler&#xff0c;该handler为SIG_IGN&#xff…

物联网(IoT)详解

物联网&#xff08;IoT&#xff09;详解 1. IoT定义简介2. IoT工作原理3. IoT关键技术4. 物联网与互联网区别5. IoT使用场景6. 开源物联网平台7. 参考资料 1. IoT定义简介 首先第一个问题&#xff0c;什么是物联网&#xff08;IoT&#xff09;? 物联网&#xff08;英文&#…

LabVIEW光纤水听器闭环系统

开发了一种利用LabVIEW软件开发的干涉型光纤水听器闭环工作点控制系统。该系统通过调节光源频率和非平衡干涉仪的光程差&#xff0c;实现了工作点的精确控制&#xff0c;从而提高系统的稳定性和检测精度&#xff0c;避免了使用压电陶瓷&#xff0c;使操作更加简便。 项目背景 …

thinkphp5实现弹出框(下拉框选项动态赋值)

效果图 原理 先执行接口获取动态数据&#xff0c;然后在 layer.open的success回调函数中动态添加html代码片段&#xff0c;通过如下方法&#xff0c;将动态生成的代码插入指定的div中&#xff0c;实现动态赋值的效果。 // 动态获取的数据 var data ......;// 弹出框配置 lay…

【BUU】[NewStarCTF 2023 公开赛道]Final -CP读取文件内容

漏洞检测 访问首页发现是ThinkPHP5 的站点 用工具扫描一下,发现存在ThinkPHP5.0.23 RCE漏洞 访问验证,写入shell 成功写入shell. 根目录发现flag,但是权限不足 提权获取flag 准备提权,这里一开始尝试了find,但是find权限不足 尝试采用cp命令,移动到web目录,发现访问还是…

基于web的物流管理系统--论文pf

TOC springboot473基于web的物流管理系统--论文pf 第1章 绪论 1.1 课题背景 二十一世纪互联网的出现&#xff0c;改变了几千年以来人们的生活&#xff0c;不仅仅是生活物资的丰富&#xff0c;还有精神层次的丰富。在互联网诞生之前&#xff0c;地域位置往往是人们思想上不可…

基于深度学习的图像特征优化识别复杂环境中的果蔬【多种模型切换】

文章目录 有需要本项目的代码或文档以及全部资源&#xff0c;或者部署调试可以私信博主项目介绍图像特征优化方法模型原理及实验对比模型训练每文一语 有需要本项目的代码或文档以及全部资源&#xff0c;或者部署调试可以私信博主 项目介绍 基于深度学习的图像识别技术广泛应…

清影智能开源版CogVideox:开源文本到视频生成模型的探索

人工智能&#xff08;AI&#xff09;领域的创新一直在不断推进&#xff0c;而下一个前沿领域&#xff0c;很可能就是文本到视频生成模型。在不久的将来&#xff0c;我们将会看到许多中小型公司推出自己的文本到视频生成模型&#xff0c;这一技术将会迅速发展。而这正是为什么当…

Java | Leetcode Java题解之第350题两个数组的交集II

题目&#xff1a; 题解&#xff1a; class Solution {public int[] intersect(int[] nums1, int[] nums2) {Arrays.sort(nums1);Arrays.sort(nums2);int length1 nums1.length, length2 nums2.length;int[] intersection new int[Math.min(length1, length2)];int index1 …

建筑工程项目管理系统-计算机毕设Java|springboot实战项目

&#x1f34a;作者&#xff1a;计算机毕设匠心工作室 &#x1f34a;简介&#xff1a;毕业后就一直专业从事计算机软件程序开发&#xff0c;至今也有8年工作经验。擅长Java、Python、微信小程序、安卓、大数据、PHP、.NET|C#、Golang等。 擅长&#xff1a;按照需求定制化开发项目…

Java——反射(4/4):反射的作用、应用场景(案例需求、实现步骤、代码实现)

目录 作用 应用场景 案例需求 实现步骤 代码实现 作用 基本作用&#xff1a;可以得到一个类的全部成分然后操作。可以破坏封装性。最重要的用途是&#xff1a;适合做Java的框架&#xff0c;基本上&#xff0c;主流的框架都会基于反射设计出一些通用的功能。 通过反射能够…

JVisualVM 基础知识与配置详解(图文界面)

目录 前言1. 基本知识2. 下载配置3. 测试 前言 对于Java的基本知识&#xff0c;推荐阅读&#xff1a; java框架 零基础从入门到精通的学习路线 附开源项目面经等&#xff08;超全&#xff09;【Java项目】实战CRUD的功能整理&#xff08;持续更新&#xff09; 1. 基本知识 …

[Meachines] [Easy] Bastion SMB未授权访问+VHD虚拟硬盘挂载+注册表获取NTLM哈希+mRemoteNG远程管理工具权限提升

信息收集 IP AddressOpening Ports10.10.10.134TCP:22, 135, 139, 445, 5985, 47001, 49664, 49665, 49666, 49667, 49668, 49669, 49670 $ nmap -p- 10.10.10.134 --min-rate 1000 -sC -sV PORT STATE SERVICE VERSION 22/tcp open ssh OpenSSH fo…

multimodel ocr dataset

InternLM-XComposer2-4KHD InternLM-XComposer2-4KHD a light-weight Vision Encoder OpenAI ViT-Large/14Large Language Model InternLM2-7B, 这篇论文采用的是一种动态分辨率的输入&#xff1b; 全图有一个global view,resize到336*336&#xff1b; 然后把图片resize再pad…