EmguCV学习笔记 VB.Net 6.4 霍夫变换

   版权声明:本文为博主原创文章,转载请在显著位置标明本文出处以及作者网名,未经作者允许不得用于商业目的。

EmguCV是一个基于OpenCV的开源免费的跨平台计算机视觉库,它向C#和VB.NET开发者提供了OpenCV库的大部分功能。

教程VB.net版本请访问:EmguCV学习笔记 VB.Net 目录-CSDN博客

教程C#版本请访问:EmguCV学习笔记 C# 目录-CSDN博客

笔者的博客网址:https://blog.csdn.net/uruseibest

教程配套文件及相关说明以及如何获得pdf教程和代码,请移步:EmguCV学习笔记

学习VB.Net知识,请移步: vb.net 教程 目录_vb中如何用datagridview-CSDN博客

 学习C#知识,请移步:C# 教程 目录_c#教程目录-CSDN博客

 

6.4 霍夫变换

霍夫变换(Hough Transform)是一种在图像中检测几何形状的常用方法,最初用于检测直线,后来也扩展到检测其他形状,如圆、椭圆等。霍夫变换的核心思想是将图像空间中的特征点映射到参数空间中,并通过在参数空间中寻找峰值来检测形状。

霍夫变换的优点是对于图像中的形状检测具有较好的鲁棒性,对于存在噪声和遮挡的情况仍能有效检测。然而,它的计算复杂度较高,对于大型图像或复杂形状的检测可能会消耗较多的计算资源。

在Emgu.CV中,霍夫变换相关的函数有CvInvoke.HoughLinesP用于检测直线线段,CvInvoke.HoughLines用于直线检测,CvInvoke.HoughCircles用于圆检测等。这些函数可以方便地在图像中进行霍夫变换来检测不同形状的目标。

6.4.1 HoughLines 

CvInvoke.HoughLines方法用于在图像中检测直线。该函数会返回检测到的直线的参数。该方法声明如下:

Public Shared Sub HoughLines(image As Emgu.CV.IInputArray, lines As Emgu.CV.IOutputArray, rho As Double, theta As Double, threshold As Integer, Optional srn As Double = 0, Optional stn As Double = 0)

参数说明:

  1. Image:输入源图像(一般为8位单通道二值图像)。
  2. lines:经过霍夫变换后检测线条的输出矢量。这里传入VectorOfPointF类型变量。返回的每一条线由两个元素的矢量(ρ, θ)表示, 其中ρ是离坐标原点的距离, θ是弧度线条旋转角度(0表示垂直线, n / 2度表示水平线)。
  3. rho:以像素为单位的距离精度, 可以认为是直线搜索时的步进尺寸的单位半径。
  4. theta:以弧度为单位的角度精度, 可以认为是直线搜索时的步进尺寸的角度单位,常设为 Math.PI / 180。
  5. threshold:直线检测的阈值,只有当检测到的点数大于该阈值时才认为是直线。
  6. srn:控制距离分辨率。将距离分辨率除以srn+1,从而减小距离分辨率。其默认值为0。该参数的值越大,累加器空间的距离分辨率就越低,检测到的直线数量也会相应地减少。
  7. stn:控制角度分辨率。将角度分辨率除以stn+1,从而减小角度分辨率。其默认值为0。该参数的值越大,累加器空间的角度分辨率就越低,检测到的直线数量也会相应地减少。

【代码位置:frmChapter6】Button16_Click

   'HoughLines

    Private Sub Button16_Click(sender As Object, e As EventArgs) Handles Button16.Click

        Dim m1 As New Mat("C:\learnEmgucv\line.jpg", CvEnum.ImreadModes.AnyColor)

        '边缘检测

        Dim mid1 As New Mat

        CvInvoke.Canny(m1, mid1, 80, 255, 3)

        '二值化

        Dim mid2 As New Mat

        CvInvoke.Threshold(mid1, mid2, 125, 255, ThresholdType.Binary)

        ImageBox1.Image = mid2

        'HoughLines检测直线

        Dim outlines As New  VectorOfPointF

        CvInvoke.HoughLines(mid2, outlines, 1, Math.PI / 180, 250, 0, 0)

        Dim m2 As New Mat

        m2 = mid1.Clone()

        m2.SetTo(New MCvScalar(0))

        '计算每条直线的起始坐标,并绘制出来

        For i As Integer = 0 To outlines.Size - 1

            Dim line As PointF = outlines(i)

            Dim rho As Double = line.X

            Dim theta As Double = line.Y

            Dim a As Double = Math.Cos(theta)

            Dim b As Double = Math.Sin(theta)

            Dim x0 As Double = rho * a

            Dim y0 As Double = rho * b

            Dim pt1 As New Point

            pt1.X = Math.Round(x0 + m2.Cols * (-b))

            pt1.Y = Math.Round(y0 + m2.Rows * a

            Dim pt2 As New Point

            pt2.X = Math.Round(x0 - m2.Cols * (-b))

            pt2.Y = Math.Round(y0 - m2.Rows * a)

            '绘制直线

            CvInvoke.Line(m2, pt1, pt2, New MCvScalar(255), 2)

        Next

        ImageBox2.Image = m2

        '减少检测到的点数

        Dim outlines3 As New VectorOfPointF

        CvInvoke.HoughLines(mid2, outlines3, 1, Math.PI / 180, 120, 0, 0)

        Dim m3 As New Mat

        m3 = mid1.Clone()

        m3.SetTo(New MCvScalar(0))

        Dim length3 As Double = Math.Max(m3.Rows, m3.Cols)

        For i As Integer = 0 To outlines3.Size - 1

            Dim line As PointF = outlines3(i)

            Dim rho As Double = line.X

            Dim theta As Double = line.Y

            Dim a As Double = Math.Cos(theta)

            Dim b As Double = Math.Sin(theta)

            Dim x0 As Double = rho * a

            Dim y0 As Double = rho * b

            Dim pt1 As New Point

            pt1.X = Math.Round(x0 + m2.Cols * (-b))

            pt1.Y = Math.Round(y0 + m2.Rows * a)

            Dim pt2 As New Point

            pt2.X = Math.Round(x0 - m2.Cols * (-b))

            pt2.Y = Math.Round(y0 - m2.Rows * a)

            CvInvoke.Line(m3, pt1, pt2, New MCvScalar(255), 2)

        Next

        ImageBox3.Image = m3

End Sub

运行后如下图所示:

图6-17 直线检测结果

6.4.2 HoughLinesP        

CvInvoke.HoughLinesP方法用于在图像中检测线段。该方法的两个声明如下:

Public Shared Sub HoughLinesP(image As Emgu.CV.IInputArray, lines As Emgu.CV.IOutputArray, rho As Double, theta As Double, threshold As Integer, Optional minLineLength As Double = 0, Optional maxGap As Double = 0)

Public Shared Function HoughLinesP(image As Emgu.CV.IInputArray, rho As Double, theta As Double, threshold As Integer, Optional minLineLength As Double = 0, Optional maxGap As Double = 0) As Emgu.CV.Structure.LineSegment2D()

参数解释:

  1. image:输入图像(Image(Of Gray, Byte)类型)。
  2. lines:经过霍夫变换后检测线条的输出矢量。VectorOfRect类型,每个成员是一个Rectangle类型,属性X 、Y、Width、Height分别表示第一个点的X、第一个点的Y,第二个点的X、第二个点的Y。
  3. rho:以像素为单位的距离精度。
  4. theta:以弧度为单位的角度精度。
  5. threshold:直线检测的阈值,只有当检测到的点数大于该阈值时才认为是直线。
  6. minLineLength:线段的最小长度,小于该长度的线段将被忽略。
  7. maxLineGap:线段之间的最大间隔,超过该间隔的线段将被认为是不同的线段。

返回值:

检测到的线段数组(LineSegment2D()类型)。

【代码位置:frmChapter6】Button17_Click

    'HoughLinesP

    Private Sub Button17_Click(sender As Object, e As EventArgs) Handles Button17.Click

        Dim m1 As New Mat("C:\learnEmgucv\line.jpg", CvEnum.ImreadModes.AnyColor)

        '边缘检测

        Dim mid1 As New Mat

        CvInvoke.Canny(m1, mid1, 80, 255, 3)

        '二值化

        Dim mid2 As New Mat

        CvInvoke.Threshold(mid1, mid2, 125, 255, ThresholdType.Binary)

        ImageBox1.Image = mid2

        Dim outlines() As LineSegment2D

        outlines = CvInvoke.HoughLinesP(mid2, 1, Math.PI / 180, 100, 0, 0)

        Dim m2 As New Mat

        m2 = mid1.Clone()

        m2.SetTo(New MCvScalar(0))

        '绘制检测出的线段

        For i As Integer = 0 To outlines.Length - 1

            CvInvoke.Line(m2, outlines(i).P1, outlines(i).P2, New MCvScalar(255), 2)

        Next

        ImageBox2.Image = m2

        Dim outlines2 As New VectorOfRect()

        CvInvoke.HoughLinesP(mid2, outlines2, 1, Math.PI / 180, 100 5 30)

        Dim m3 As New Mat

        m3 = mid1.Clone()

        m3.SetTo(New MCvScalar(0))

        For i As Integer = 0 To outlines2.Size - 1

            CvInvoke.Line(m3, New Point(outlines2(i).X, outlines2(i).Y), New Point(outlines2(i).Width, outlines2(i).Height), New MCvScalar(255), 2)

        Next

        ImageBox3.Image = m3

End Sub

运行后如下图所示:

图6-18 线段检测结果

6.4.3 HoughCircles

CvInvoke.HoughCircles函数用于在图像中检测圆形,该方法声明如下:

Public Shared Function HoughCircles(image As Emgu.CV.IInputArray, method As Emgu.CV.CvEnum.HoughModes, dp As Double, minDist As Double, Optional param1 As Double = 100, Optional param2 As Double = 100, Optional minRadius As Integer = 0, Optional maxRadius As Integer = 0) As Emgu.CV.Structure.CircleF()

参数说明:

  1. image:8位单通道灰度源图像(或者传入的源图像是Image(Of Gray, Byte)类型)。
  2. method:霍夫变换的方法,可以选择HoughType.Gradient或HoughType.GradientAlt。
  3. dp:累加器图像的分辨率与输入图像的分辨率之比。例如,dp = 1,则累加器具有与输入图像相同的分辨率。如果dp = 2,则累加器的宽度和高度都是一半。
  4. minDist:检测到的圆心之间的最小距离,太小会多检,太大会漏检。
  5. param1:Canny边缘检测的高阈值。
  6. param2:圆心累加器阈值,只有当累加器图像中的值大于该阈值时才认为是圆心。相应的该阈值越小,可得到越多的圆。
  7. minRadius:达到检测要求的最小圆半径。
  8. maxRadius:达到检测要求的最大圆半径。

返回值:

检测到的圆形数组(CircleF()类型)。

【代码位置:frmChapter6】Button18_Click

    'HoughCircles

    Private Sub Button18_Click(sender As Object, e As EventArgs) Handles Button18.Click

        Dim m1 As New Mat("C:\learnEmgucv\aoyun.jpg", CvEnum.ImreadModes.Grayscale)

        ImageBox1.Image = m1

        Dim mid1 As New Mat

        CvInvoke.GaussianBlur(m1, mid1, New Drawing.Size(3, 3), 3)

        ImageBox2.Image = mid1

        Dim outcircle() As CircleF

        outcircle = CvInvoke.HoughCircles(mid1, HoughModes.Gradient, 2, 50, 140, 220, 5)

        Dim m2 As New Mat

        m2 = mid1.Clone()

        m2.SetTo(New MCvScalar(255))

        For i As Integer = 0 To outcircle.Length - 1

            CvInvoke.Circle(m2, New Point(Integer.Parse(outcircle(i).Center.X), Integer.Parse(outcircle(i).Center.Y)), outcircle(i).Radius, New MCvScalar(0), 2)

        Next

        ImageBox3.Image = m2

End Sub

运行后如下图所示:

图6-19 圆形检测结果

另外一个例子,代码同上,只是载入的图片不同:

【代码位置:frmChapter6】Button19_Click

……

     Dim m1 As New Mat("C:\learnEmgucv\Matchimg.jpg", CvEnum.ImreadModes.Grayscale)

……

运行后如下图所示:

图6-20 圆形检测结果

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/408389.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于x86 平台opencv的图像采集和seetaface6的人脸朝向姿态估计功能

目录 一、概述二、环境要求2.1 硬件环境2.2 软件环境三、开发流程3.1 编写测试3.2 配置资源文件3.2 验证功能一、概述 本文档是针对x86 平台opencv的图像采集和seetaface6的人脸朝向姿态估计功能,opencv通过摄像头采集视频图像,将采集的视频图像送给seetaface6的人脸朝向姿态…

Telnet不止于端口测试:探索经典工具的多样化应用

文章目录 Telnet详解与实用指南1. 引言2. Telnet 的安装和启动2.1 在 Windows 上安装 Telnet2.2 在 Linux 上安装 Telnet2.3 在 macOS 上使用 Telnet 3. Telnet 的基本命令与操作3.1 远程登录3.2 测试端口连通性3.3 调试网络服务3.4 网络协议调试3.5 简单的文件传输 4. Telnet …

sklearn中的线性回归

多元线性回归 指的 是一个样本 有多个特征的 线性回归问题。 w 被统称为 模型的 参数,其中 w0 被称为截距(intercept),w1~wn 被称为 回归系数(regression coefficient)。这个表达式和 yazb 是同样的…

Web前端性能优化合集

简介 自互联网兴起以来,从最初的静态网页到如今的动态交互、单页应用(SPA)、PWA(Progressive Web Apps)等,互联网技术正在飞速发展,随着用户体验成为核心竞争力之一,前端性能直接影…

【Midjourney】Midjourney全面开放网站版,所有用户每天可免费生成25次

Midjourney一直作为AI文生图领域的龙头老大,最近对面对市场上日益增长的竞争压力,尤其是来自 Flux 的挑战,终于向所有用户开放官方网站。尽管还处于早期阶段,但为了吸引更多用户体验,它暂时是完全免费的。 下面是Midj…

什么是d3dx9_42.dll?如何将丢失的d3dx9_42.dll进行修复呢?

d3dx9_42.dll文件丢失什么情况?如何将丢失的d3dx9_42.dll进行修复呢?d3dx9_42.dll又是什么文件?d3dx9_42.dll 文件是一个由 Microsoft Corporation 开发的部分,属于 Microsoft DirectX for Windows 的一组庞大库集合中的一个。Dir…

Android系统架构

文章目录 Android系统架构Android四层架构01.Linux内核层02.系统运行库层03.应用框架层04.应用层 Android应用开发特色01.四大组件02.丰富的系统控件03. SQLite数据库04.强大的多媒体05.地理位置定位 Android系统架构 为了让你能够更好地理解Android系统是怎么工作的&#xff…

HashMap 的实现原理

说一下 HashMap 的实现原理? JDK1.7 HashMap的主干是一个Entry数组。Entry是HashMap的基本组成单元,每一个Entry包含一个key-value键值对。(其实所谓Map其实就是保存了两个对象之间的映射关系的一种集合),其中Key 和…

PDPS软件 那智机器人 (丰田版)离线程序导出处理

在PDPS仿真软件中导出的那智机器人离线程序,一般是无法直接给TFD控制装置-那智机器人(丰田式样版)导入及识别使用。因此要对导出的程序进行转换编译处理,才能给TFD那智机器人(丰田式样版)导入离线程序。以下…

Java共享内容通信 VS Golang通信共享内存

接触的编程语言从C到Java再到现在Go,每个语言都有其独有特性,也具备共通之处。 最近在学习并发编程的时候,发现一个很有意思的点:Java基于共享共享内存通信,而Golang则是通过通信共享内存。为什么?下面我们…

自定义@ResponseBody以及SpringMVC总结

文章目录 1.需求分析2.目录3.自定义ResponseBody注解4.MonsterController.java5.Monster.java 实现序列化接口6.引入jackson7.Adapter.java 如果有ResponseBody注解就返回json8.测试9.SpringMVC执行流程 1.需求分析 2.目录 3.自定义ResponseBody注解 package com.sunxiansheng…

简单实现进度条效果(vue2)

如果用echarts或者其他图表来写个进度条有点大材小用&#xff0c;所以直接简单html、js写一下就可以&#xff1b; 以下代码基于vue2&#xff0c; 部分代码来自国内直连GPT/Claude镜像站 <template><div class"progress-container"><div class"p…

springboot框架中filter过滤器的urlPatterns的匹配源码

如下图所示&#xff0c;我使用WebFilter注解的方式定义了一个过滤器&#xff0c;同时定义了过滤器的过滤条件 urlPatterns为/*,可能很多人都知道filter的/*代表所有URL都匹配&#xff0c;但是源码在哪里呢 先打断点看一下调用链 然后跟着调用链慢慢点&#xff0c;看看哪里开始…

【Material-UI】深入了解Radio Group中的useRadioGroup Hook

文章目录 一、什么是useRadioGroup&#xff1f;1.1 Hook的返回值 二、useRadioGroup的基本用法2.1 代码示例2.2 代码解析 三、useRadioGroup的应用场景3.1 动态样式调整3.2 高级交互逻辑 四、使用useRadioGroup的最佳实践4.1 保持代码简洁4.2 结合主题定制4.3 注意无障碍设计 五…

【论文分享】Graviton: Trusted Execution Environments on GPUs 2018’OSDI

目录 AbstractIntroductioncontributions BackgroundGPUSoftware stackHardwareContext and channel managementCommand submissionProgramming modelInitializationMemory allocationHost-GPU transfersKernel dispatch Sharing Intel SGX Threat ModelOverviewGraviton Archi…

【动态规划】第 N 个泰波那契数

欢迎来到 破晓的历程的 博客 ⛺️不负时光&#xff0c;不负己✈️ 文章目录 题目讲解算法原理代码实现 题目 题目如下&#xff1a; 讲解算法原理 我们先说一下动态规划题目的整体做题思路&#xff1a; 第一步&#xff1a; 状态表示 什么是状态表示? 做动态规划类题目一般…

appium学习记录

免责声明 本文内容仅供参考&#xff0c;将appuim与爬虫技术相结合可能违反某些app的使用条款和法律法规。作者不对因此产生的法律问题或技术风险负责。建议读者在进行爬取操作前&#xff0c;充分了解相关法律法规并确保合规。 1、初识appium 背景&#xff1a;部分APP需要反编译…

<数据集>遥感船舶识别数据集<目标检测>

数据集格式&#xff1a;VOCYOLO格式 图片数量&#xff1a;15047张 标注数量(xml文件个数)&#xff1a;15047 标注数量(txt文件个数)&#xff1a;15047 标注类别数&#xff1a;25 标注类别名称&#xff1a;[Aircraft Carrier, Auxiliary Ships, Other Ship, Other Warship,…

vue项目中,修改elementui一些复杂控件样式

1.前言 在vue项目中&#xff0c;我们为了快速开发&#xff0c;会用到elementui。但很多时候&#xff0c;elementui的样式不满足于我们项目的样式需求。这时候我们需要修改原生elementui的样式。 2.简单控件的样式修改 对于elementui中一些简单的控件&#xff0c;如按钮之类的…

三维平面电磁铁、交流电磁铁、显微镜磁场北京大学方案

根据用户北京大学需求设计制造方案如下 三维平面电磁铁产品规格 5MPS63-25型三维平面电磁铁&#xff0c;X、Y方向磁场由2对正交的磁极产生&#xff0c;Z轴由一组同轴线圈产生&#xff1b; 每轴对应的两个线圈正接产生均匀磁场&#xff0c;反接产生梯度磁场&#xff1b; …