pyro 教程 时间序列 单变量,重尾,python pytorch,教程和实例 Forecasting预测,布朗运动项、偏差项和协变量项

预测I:单变量,重尾¶

本教程介绍了预测模块,用Pyro模型进行预测的框架。本教程只涵盖单变量模型和简单的可能性。本教程假设读者已经熟悉慢病毒感染和张量形状.

另请参见:

  • 预测II:状态空间模型

  • 预测三:层次模型

摘要¶

  • 要创建预测模型:

    1. 创建预测模型班级。

    2. 实现。模型(零数据,协变量)使用标准Pyro语法的方法。

    3. 中的所有时间局部变量进行采样self.time_plate语境。

    4. 最后调用。predict(noise_dist,预测)方法。

  • 若要定型预测模型,请创建一个预报员对象。

    • 训练可能是不稳定的,你需要调整超参数并随机重启。

    • 重新参数化可以帮助学习,例如LocScaleReparam.

  • 为了预测未来,从一个Forecaster以数据和协变量为条件的对象。

  • 要模拟季节性,请使用助手周期性_特征(), 周期性重复(),以及periodic_cumsum().

  • 要对重尾数据建模,请使用稳定的分发和稳定程序.

  • 若要评估结果,请使用回溯测试()助手或低级损失函数。

[1]:
import torch
import pyro
import pyro.distributions as dist
import pyro.poutine as poutine
from pyro.contrib.examples.bart import load_bart_od
from pyro.contrib.forecast import ForecastingModel, Forecaster, backtest, eval_crps
from pyro.infer.reparam import LocScaleReparam, StableReparam
from pyro.ops.tensor_utils import periodic_cumsum, periodic_repeat, periodic_features
from pyro.ops.stats import quantile
import matplotlib.pyplot as plt%matplotlib inline
assert pyro.__version__.startswith('1.9.1')
pyro.set_rng_seed(20200221)
[2]:
dataset = load_bart_od()
print(dataset.keys())
print(dataset["counts"].shape)
print(" ".join(dataset["stations"]))
dict_keys(['stations', 'start_date', 'counts'])
torch.Size([78888, 50, 50])
12TH 16TH 19TH 24TH ANTC ASHB BALB BAYF BERY CAST CIVC COLM COLS CONC DALY DBRK DELN DUBL EMBR FRMT FTVL GLEN HAYW LAFY LAKE MCAR MLBR MLPT MONT NBRK NCON OAKL ORIN PCTR PHIL PITT PLZA POWL RICH ROCK SANL SBRN SFIA SHAY SSAN UCTY WARM WCRK WDUB WOAK

Pyro预测框架介绍¶

Pyro的预测框架包括:- a预测模型基类,谁的.model()方法可以为自定义预测模型实现预报员使用训练和预测的类ForecastingModels,和- a回溯测试()帮助评估模型的一些指标。

考虑一个简单的单变量数据集,比如每周一次BART火车网络中所有车站的乘客总数。这个数据大概是对数的,所以我们用对数变换来建模。

[3]:
T, O, D = dataset["counts"].shape
data = dataset["counts"][:T // (24 * 7) * 24 * 7].reshape(T // (24 * 7), -1).sum(-1).log()
data = data.unsqueeze(-1)
plt.figure(figsize=(9, 3))
plt.plot(data)
plt.title("Total weekly ridership")
plt.ylabel("log(# rides)")
plt.xlabel("Week after 2011-01-01")
plt.xlim(0, len(data));

_images/forecasting_i_4_0.png

先说一个简单的对数线性回归模型,没有趋势性和季节性。注意,虽然这个例子是单变量的,但是Pyro的预测框架是多变量的,所以我们经常需要使用.unsqueeze(-1).expand([1]),以及.to_event(1).

[4]:

# 定义一个继承自ForecastingModel的Model2类。
class Model2(ForecastingModel):def model(self, zero_data, covariates):data_dim = zero_data.size(-1)feature_dim = covariates.size(-1)# 定义模型的偏差项,使用正态分布进行采样。bias = pyro.sample("bias", dist.Normal(0, 10).expand([data_dim]).to_event(1))# 定义模型的权重,使用正态分布进行采样。weight = pyro.sample("weight", dist.Normal(0, 0.1).expand([feature_dim]).to_event(1))# 我们将会采样一个全局的时间尺度参数,在时间板(plate)之外,# 然后在时间板内部采样局部独立同分布(iid)噪声。drift_scale = pyro.sample("drift_scale",dist.LogNormal(-20, 5).expand([1]).to_event(1))with self.time_plate:  # 使用时间板来表示时间序列数据。# 使用重参数化技术来提高变分拟合的效果。即使移除这个上下文管理器,# 模型仍然是正确的,但拟合效果看起来会更差。with poutine.reparam(config={"drift": LocScaleReparam()}):drift = pyro.sample("drift", dist.Normal(zero_data, drift_scale).to_event(1))# 采样了iid "drift" 噪声之后,我们可以以任何时间依赖的方式组合它。# 重要的是保持板内的所有内容独立,并在板外应用依赖变换。motion = drift.cumsum(-2)  # 一个布朗运动。# 预测现在包括三个项:布朗运动项、偏差项和协变量项。prediction = motion + bias + (weight * covariates).sum(-1, keepdim=True)# 确保预测的形状与zero_data的形状一致。assert prediction.shape[-2:] == zero_data.shape# 构建噪声分布并进行预测。noise_scale = pyro.sample("noise_scale", dist.LogNormal(-5, 5).expand([1]).to_event(1))noise_dist = dist.Normal(0, noise_scale)self.predict(noise_dist, prediction)
# First we need some boilerplate to create a class and define a .model() method.
class Model1(ForecastingModel):# We then implement the .model() method. Since this is a generative model, it shouldn't# look at data; however it is convenient to see the shape of data we're supposed to# generate, so this inputs a zeros_like(data) tensor instead of the actual data.def model(self, zero_data, covariates):data_dim = zero_data.size(-1)  # Should be 1 in this univariate tutorial.feature_dim = covariates.size(-1)# The first part of the model is a probabilistic program to create a prediction.# We use the zero_data as a template for the shape of the prediction.bias = pyro.sample("bias", dist.Normal(0, 10).expand([data_dim]).to_event(1))weight = pyro.sample("weight", dist.Normal(0, 0.1).expand([feature_dim]).to_event(1))prediction = bias + (weight * covariates).sum(-1, keepdim=True)# The prediction should have the same shape as zero_data (duration, obs_dim),# but may have additional sample dimensions on the left.assert prediction.shape[-2:] == zero_data.shape# The next part of the model creates a likelihood or noise distribution.# Again we'll be Bayesian and write this as a probabilistic program with# priors over parameters.noise_scale = pyro.sample("noise_scale", dist.LogNormal(-5, 5).expand([1]).to_event(1))noise_dist = dist.Normal(0, noise_scale)# The final step is to call the .predict() method.self.predict(noise_dist, prediction)

我们现在可以通过创建一个预报员对象。我们将把数据分成[T0,T1)用于培训和[T1,T2)为了测试。

[5]:
T0 = 0              # begining
T2 = data.size(-2)  # end
T1 = T2 - 52        # train/test split
[6]:
%%time
pyro.set_rng_seed(1)
pyro.clear_param_store()
time = torch.arange(float(T2)) / 365
covariates = torch.stack([time], dim=-1)
forecaster = Forecaster(Model1(), data[:T1], covariates[:T1], learning_rate=0.1)
INFO     step    0 loss = 484401
INFO     step  100 loss = 0.609042
INFO     step  200 loss = -0.535144
INFO     step  300 loss = -0.605789
INFO     step  400 loss = -0.59744
INFO     step  500 loss = -0.596203
INFO     step  600 loss = -0.614217
INFO     step  700 loss = -0.612415
INFO     step  800 loss = -0.613236
INFO     step  900 loss = -0.59879
INFO     step 1000 loss = -0.601271
CPU times: user 4.37 s, sys: 30.4 ms, total: 4.4 s
Wall time: 4.4 s

接下来,我们可以从预测者那里抽取后验样本进行评估,传递全部协变量,但只传递部分数据。我们会用Pyro的分位数()绘制中位数和80%置信区间的函数。为了评估适合度,我们将使用eval_crps()计算连续分级概率得分;这是评估重尾分布的分布拟合度的一个很好的指标。

[7]:
samples = forecaster(data[:T1], covariates, num_samples=1000)
p10, p50, p90 = quantile(samples, (0.1, 0.5, 0.9)).squeeze(-1)
crps = eval_crps(samples, data[T1:])
print(samples.shape, p10.shape)plt.figure(figsize=(9, 3))
plt.fill_between(torch.arange(T1, T2), p10, p90, color="red", alpha=0.3)
plt.plot(torch.arange(T1, T2), p50, 'r-', label='forecast')
plt.plot(data, 'k-', label='truth')
plt.title("Total weekly ridership (CRPS = {:0.3g})".format(crps))
plt.ylabel("log(# rides)")
plt.xlabel("Week after 2011-01-01")
plt.xlim(0, None)
plt.legend(loc="best");
torch.Size([1000, 52, 1]) torch.Size([52])

_images/forecasting_i_11_1.png

放大到预测区域,我们看到该模型忽略了季节性行为。

[8]:
plt.figure(figsize=(9, 3))
plt.fill_between(torch.arange(T1, T2), p10, p90, color="red", alpha=0.3)
plt.plot(torch.arange(T1, T2), p50, 'r-', label='forecast')
plt.plot(torch.arange(T1, T2), data[T1:], 'k-', label='truth')
plt.title("Total weekly ridership (CRPS = {:0.3g})".format(crps))
plt.ylabel("log(# rides)")
plt.xlabel("Week after 2011-01-01")
plt.xlim(T1, None)
plt.legend(loc="best");

_images/forecasting_i_13_0.png

我们可以简单地通过添加新的协变量来添加每年的季节性成分(注意,我们已经在模型中处理了feature_dim > 1).

[9]:
%%time
pyro.set_rng_seed(1)
pyro.clear_param_store()
time = torch.arange(float(T2)) / 365
covariates = torch.cat([time.unsqueeze(-1),periodic_features(T2, 365.25 / 7)], dim=-1)
forecaster = Forecaster(Model1(), data[:T1], covariates[:T1], learning_rate=0.1)
INFO     step    0 loss = 53174.4
INFO     step  100 loss = 0.519148
INFO     step  200 loss = -0.0264822
INFO     step  300 loss = -0.314983
INFO     step  400 loss = -0.413243
INFO     step  500 loss = -0.487756
INFO     step  600 loss = -0.472516
INFO     step  700 loss = -0.595866
INFO     step  800 loss = -0.500985
INFO     step  900 loss = -0.558623
INFO     step 1000 loss = -0.589603
CPU times: user 4.5 s, sys: 34.3 ms, total: 4.53 s
Wall time: 4.54 s
[10]:
samples = forecaster(data[:T1], covariates, num_samples=1000)
p10, p50, p90 = quantile(samples, (0.1, 0.5, 0.9)).squeeze(-1)
crps = eval_crps(samples, data[T1:])plt.figure(figsize=(9, 3))
plt.fill_between(torch.arange(T1, T2), p10, p90, color="red", alpha=0.3)
plt.plot(torch.arange(T1, T2), p50, 'r-', label='forecast')
plt.plot(data, 'k-', label='truth')
plt.title("Total weekly ridership (CRPS = {:0.3g})".format(crps))
plt.ylabel("log(# rides)")
plt.xlabel("Week after 2011-01-01")
plt.xlim(0, None)
plt.legend(loc="best");

_images/forecasting_i_16_0.png

[11]:
plt.figure(figsize=(9, 3))
plt.fill_between(torch.arange(T1, T2), p10, p90, color="red", alpha=0.3)
plt.plot(torch.arange(T1, T2), p50, 'r-', label='forecast')
plt.plot(torch.arange(T1, T2), data[T1:], 'k-', label='truth')
plt.title("Total weekly ridership (CRPS = {:0.3g})".format(crps))
plt.ylabel("log(# rides)")
plt.xlabel("Week after 2011-01-01")
plt.xlim(T1, None)
plt.legend(loc="best");

_images/forecasting_i_17_0.png

时间局部随机变量:self.time_plate

到目前为止,我们已经看到了ForecastingModel.model()方法和self.predict()。特定于预测的最后一部分语法是self.time_plate时间局部变量的上下文。要了解这是如何工作的,请考虑将上面的全球线性趋势模型改为局部水平模型。请注意poutine.reparam()handler是一个通用的Pyro推理技巧,不是专门针对预测的。

[12]:
# 定义一个继承自ForecastingModel的Model2类。
class Model2(ForecastingModel):def model(self, zero_data, covariates):data_dim = zero_data.size(-1)feature_dim = covariates.size(-1)# 定义模型的偏差项,使用正态分布进行采样。bias = pyro.sample("bias", dist.Normal(0, 10).expand([data_dim]).to_event(1))# 定义模型的权重,使用正态分布进行采样。weight = pyro.sample("weight", dist.Normal(0, 0.1).expand([feature_dim]).to_event(1))# 我们将会采样一个全局的时间尺度参数,在时间板(plate)之外,# 然后在时间板内部采样局部独立同分布(iid)噪声。drift_scale = pyro.sample("drift_scale",dist.LogNormal(-20, 5).expand([1]).to_event(1))with self.time_plate:  # 使用时间板来表示时间序列数据。# 使用重参数化技术来提高变分拟合的效果。即使移除这个上下文管理器,# 模型仍然是正确的,但拟合效果看起来会更差。with poutine.reparam(config={"drift": LocScaleReparam()}):drift = pyro.sample("drift", dist.Normal(zero_data, drift_scale).to_event(1))# 采样了iid "drift" 噪声之后,我们可以以任何时间依赖的方式组合它。# 重要的是保持板内的所有内容独立,并在板外应用依赖变换。motion = drift.cumsum(-2)  # 一个布朗运动。# 预测现在包括三个项:布朗运动项、偏差项和协变量项。prediction = motion + bias + (weight * covariates).sum(-1, keepdim=True)# 确保预测的形状与zero_data的形状一致。assert prediction.shape[-2:] == zero_data.shape# 构建噪声分布并进行预测。noise_scale = pyro.sample("noise_scale", dist.LogNormal(-5, 5).expand([1]).to_event(1))noise_dist = dist.Normal(0, noise_scale)self.predict(noise_dist, prediction)
class Model2(ForecastingModel):def model(self, zero_data, covariates):data_dim = zero_data.size(-1)feature_dim = covariates.size(-1)bias = pyro.sample("bias", dist.Normal(0, 10).expand([data_dim]).to_event(1))weight = pyro.sample("weight", dist.Normal(0, 0.1).expand([feature_dim]).to_event(1))# We'll sample a time-global scale parameter outside the time plate,# then time-local iid noise inside the time plate.drift_scale = pyro.sample("drift_scale",dist.LogNormal(-20, 5).expand([1]).to_event(1))with self.time_plate:# We'll use a reparameterizer to improve variational fit. The model would still be# correct if you removed this context manager, but the fit appears to be worse.with poutine.reparam(config={"drift": LocScaleReparam()}):drift = pyro.sample("drift", dist.Normal(zero_data, drift_scale).to_event(1))# After we sample the iid "drift" noise we can combine it in any time-dependent way.# It is important to keep everything inside the plate independent and apply dependent# transforms outside the plate.motion = drift.cumsum(-2)  # A Brownian motion.# The prediction now includes three terms.prediction = motion + bias + (weight * covariates).sum(-1, keepdim=True)assert prediction.shape[-2:] == zero_data.shape# Construct the noise distribution and predict.noise_scale = pyro.sample("noise_scale", dist.LogNormal(-5, 5).expand([1]).to_event(1))noise_dist = dist.Normal(0, noise_scale)self.predict(noise_dist, prediction)
[13]:
%%time
pyro.set_rng_seed(1)
pyro.clear_param_store()
time = torch.arange(float(T2)) / 365
covariates = periodic_features(T2, 365.25 / 7)
forecaster = Forecaster(Model2(), data[:T1], covariates[:T1], learning_rate=0.1,time_reparam="dct",)
INFO     step    0 loss = 1.73259e+09
INFO     step  100 loss = 0.935019
INFO     step  200 loss = -0.0290582
INFO     step  300 loss = -0.193718
INFO     step  400 loss = -0.292689
INFO     step  500 loss = -0.411964
INFO     step  600 loss = -0.291355
INFO     step  700 loss = -0.414344
INFO     step  800 loss = -0.472016
INFO     step  900 loss = -0.480997
INFO     step 1000 loss = -0.540629
CPU times: user 9.47 s, sys: 56.4 ms, total: 9.52 s
Wall time: 9.54 s
[14]:
samples = forecaster(data[:T1], covariates, num_samples=1000)
p10, p50, p90 = quantile(samples, (0.1, 0.5, 0.9)).squeeze(-1)
crps = eval_crps(samples, data[T1:])plt.figure(figsize=(9, 3))
plt.fill_between(torch.arange(T1, T2), p10, p90, color="red", alpha=0.3)
plt.plot(torch.arange(T1, T2), p50, 'r-', label='forecast')
plt.plot(data, 'k-', label='truth')
plt.title("Total weekly ridership (CRPS = {:0.3g})".format(crps))
plt.ylabel("log(# rides)")
plt.xlabel("Week after 2011-01-01")
plt.xlim(0, None)
plt.legend(loc="best");

_images/forecasting_i_21_0.png

[15]:
plt.figure(figsize=(9, 3))
plt.fill_between(torch.arange(T1, T2), p10, p90, color="red", alpha=0.3)
plt.plot(torch.arange(T1, T2), p50, 'r-', label='forecast')
plt.plot(torch.arange(T1, T2), data[T1:], 'k-', label='truth')
plt.title("Total weekly ridership (CRPS = {:0.3g})".format(crps))
plt.ylabel("log(# rides)")
plt.xlabel("Week after 2011-01-01")
plt.xlim(T1, None)
plt.legend(loc="best");

_images/forecasting_i_22_0.png

重尾噪声¶

我们最终的单变量模型将从高斯噪声推广到重尾噪声稳定的噪音。唯一的区别是noise_dist它现在有两个新参数:stability确定尾部重量和skew确定正尖峰与负尖峰的相对大小。

这稳定分布是正态分布的自然重尾推广,但由于其密度函数难以处理,因此很难处理。Pyro实现了处理稳定分布的辅助变量方法。为了通知Pyro使用这些辅助变量方法,我们将最后一行用poutine.reparam()应用稳定程序变换到名为“残差”的隐式观察点。您可以通过指定以下内容为其他站点使用稳定的发行版config={"my_site_name": StableReparam()}.

[16]:
class Model3(ForecastingModel):def model(self, zero_data, covariates):data_dim = zero_data.size(-1)feature_dim = covariates.size(-1)bias = pyro.sample("bias", dist.Normal(0, 10).expand([data_dim]).to_event(1))weight = pyro.sample("weight", dist.Normal(0, 0.1).expand([feature_dim]).to_event(1))drift_scale = pyro.sample("drift_scale", dist.LogNormal(-20, 5).expand([1]).to_event(1))with self.time_plate:with poutine.reparam(config={"drift": LocScaleReparam()}):drift = pyro.sample("drift", dist.Normal(zero_data, drift_scale).to_event(1))motion = drift.cumsum(-2)  # A Brownian motion.prediction = motion + bias + (weight * covariates).sum(-1, keepdim=True)assert prediction.shape[-2:] == zero_data.shape# The next part of the model creates a likelihood or noise distribution.# Again we'll be Bayesian and write this as a probabilistic program with# priors over parameters.stability = pyro.sample("noise_stability", dist.Uniform(1, 2).expand([1]).to_event(1))skew = pyro.sample("noise_skew", dist.Uniform(-1, 1).expand([1]).to_event(1))scale = pyro.sample("noise_scale", dist.LogNormal(-5, 5).expand([1]).to_event(1))noise_dist = dist.Stable(stability, skew, scale)# We need to use a reparameterizer to handle the Stable distribution.# Note "residual" is the name of Pyro's internal sample site in self.predict().with poutine.reparam(config={"residual": StableReparam()}):self.predict(noise_dist, prediction)
[17]:
%%time
pyro.set_rng_seed(2)
pyro.clear_param_store()
time = torch.arange(float(T2)) / 365
covariates = periodic_features(T2, 365.25 / 7)
forecaster = Forecaster(Model3(), data[:T1], covariates[:T1], learning_rate=0.1,time_reparam="dct")
for name, value in forecaster.guide.median().items():if value.numel() == 1:print("{} = {:0.4g}".format(name, value.item()))
INFO     step    0 loss = 5.92061e+07
INFO     step  100 loss = 13.6553
INFO     step  200 loss = 3.18891
INFO     step  300 loss = 0.884046
INFO     step  400 loss = 0.27383
INFO     step  500 loss = -0.0354842
INFO     step  600 loss = -0.211247
INFO     step  700 loss = -0.311198
INFO     step  800 loss = -0.259799
INFO     step  900 loss = -0.326406
INFO     step 1000 loss = -0.306335
bias = 14.64
drift_scale = 3.234e-08
noise_stability = 1.937
noise_skew = 0.004095
noise_scale = 0.06038
CPU times: user 19.5 s, sys: 103 ms, total: 19.6 s
Wall time: 19.7 s
[18]:
samples = forecaster(data[:T1], covariates, num_samples=1000)
p10, p50, p90 = quantile(samples, (0.1, 0.5, 0.9)).squeeze(-1)
crps = eval_crps(samples, data[T1:])plt.figure(figsize=(9, 3))
plt.fill_between(torch.arange(T1, T2), p10, p90, color="red", alpha=0.3)
plt.plot(torch.arange(T1, T2), p50, 'r-', label='forecast')
plt.plot(data, 'k-', label='truth')
plt.title("Total weekly ridership (CRPS = {:0.3g})".format(crps))
plt.ylabel("log(# rides)")
plt.xlabel("Week after 2011-01-01")
plt.xlim(0, None)
plt.legend(loc="best");

_images/forecasting_i_26_0.png

[19]:
plt.figure(figsize=(9, 3))
plt.fill_between(torch.arange(T1, T2), p10, p90, color="red", alpha=0.3)
plt.plot(torch.arange(T1, T2), p50, 'r-', label='forecast')
plt.plot(torch.arange(T1, T2), data[T1:], 'k-', label='truth')
plt.title("Total weekly ridership (CRPS = {:0.3g})".format(crps))
plt.ylabel("log(# rides)")
plt.xlabel("Week after 2011-01-01")
plt.xlim(T1, None)
plt.legend(loc="best");

_images/forecasting_i_27_0.png

回溯测试¶

来比较我们的高斯Model2而且稳定Model3我们将使用一个简单的回溯测试()帮手。默认情况下,该助手评估三个指标:CRPS评估重尾数据的分布准确性,平均绝对误差评估重尾数据的点精度,以及均方根误差评估正态尾数据的准确性。这里的一个细微差别是设置warm_start=True以减少随机重启的需要。

[20]:
%%time
pyro.set_rng_seed(1)
pyro.clear_param_store()
windows2 = backtest(data, covariates, Model2,min_train_window=104, test_window=52, stride=26,forecaster_options={"learning_rate": 0.1, "time_reparam": "dct","log_every": 1000, "warm_start": True})
INFO     Training on window [0:104], testing on window [104:156]
INFO     step    0 loss = 3543.21
INFO     step 1000 loss = 0.140962
INFO     Training on window [0:130], testing on window [130:182]
INFO     step    0 loss = 0.27281
INFO     step 1000 loss = -0.227765
INFO     Training on window [0:156], testing on window [156:208]
INFO     step    0 loss = 0.622017
INFO     step 1000 loss = -0.0232647
INFO     Training on window [0:182], testing on window [182:234]
INFO     step    0 loss = 0.181045
INFO     step 1000 loss = -0.104492
INFO     Training on window [0:208], testing on window [208:260]
INFO     step    0 loss = 0.160061
INFO     step 1000 loss = -0.184363
INFO     Training on window [0:234], testing on window [234:286]
INFO     step    0 loss = 0.0414903
INFO     step 1000 loss = -0.207943
INFO     Training on window [0:260], testing on window [260:312]
INFO     step    0 loss = -0.00223408
INFO     step 1000 loss = -0.256718
INFO     Training on window [0:286], testing on window [286:338]
INFO     step    0 loss = -0.0552213
INFO     step 1000 loss = -0.277793
INFO     Training on window [0:312], testing on window [312:364]
INFO     step    0 loss = -0.141342
INFO     step 1000 loss = -0.36945
INFO     Training on window [0:338], testing on window [338:390]
INFO     step    0 loss = -0.148779
INFO     step 1000 loss = -0.332914
INFO     Training on window [0:364], testing on window [364:416]
INFO     step    0 loss = -0.27899
INFO     step 1000 loss = -0.462222
INFO     Training on window [0:390], testing on window [390:442]
INFO     step    0 loss = -0.328539
INFO     step 1000 loss = -0.463518
INFO     Training on window [0:416], testing on window [416:468]
INFO     step    0 loss = -0.400719
INFO     step 1000 loss = -0.494253
CPU times: user 1min 57s, sys: 502 ms, total: 1min 57s
Wall time: 1min 57s
[21]:
%%time
pyro.set_rng_seed(1)
pyro.clear_param_store()
windows3 = backtest(data, covariates, Model3,min_train_window=104, test_window=52, stride=26,forecaster_options={"learning_rate": 0.1, "time_reparam": "dct","log_every": 1000, "warm_start": True})
INFO     Training on window [0:104], testing on window [104:156]
INFO     step    0 loss = 1852.88
INFO     step 1000 loss = 0.533988
INFO     Training on window [0:130], testing on window [130:182]
INFO     step    0 loss = 2.60906
INFO     step 1000 loss = 0.0715323
INFO     Training on window [0:156], testing on window [156:208]
INFO     step    0 loss = 2.60063
INFO     step 1000 loss = 0.110426
INFO     Training on window [0:182], testing on window [182:234]
INFO     step    0 loss = 1.99784
INFO     step 1000 loss = 0.020393
INFO     Training on window [0:208], testing on window [208:260]
INFO     step    0 loss = 1.63004
INFO     step 1000 loss = -0.0936131
INFO     Training on window [0:234], testing on window [234:286]
INFO     step    0 loss = 1.33227
INFO     step 1000 loss = -0.114948
INFO     Training on window [0:260], testing on window [260:312]
INFO     step    0 loss = 1.19163
INFO     step 1000 loss = -0.193086
INFO     Training on window [0:286], testing on window [286:338]
INFO     step    0 loss = 1.01131
INFO     step 1000 loss = -0.242592
INFO     Training on window [0:312], testing on window [312:364]
INFO     step    0 loss = 0.983859
INFO     step 1000 loss = -0.279851
INFO     Training on window [0:338], testing on window [338:390]
INFO     step    0 loss = 0.560554
INFO     step 1000 loss = -0.209488
INFO     Training on window [0:364], testing on window [364:416]
INFO     step    0 loss = 0.716816
INFO     step 1000 loss = -0.369162
INFO     Training on window [0:390], testing on window [390:442]
INFO     step    0 loss = 0.391474
INFO     step 1000 loss = -0.45527
INFO     Training on window [0:416], testing on window [416:468]
INFO     step    0 loss = 0.37326
INFO     step 1000 loss = -0.508014
CPU times: user 4min 1s, sys: 960 ms, total: 4min 2s
Wall time: 4min 2s
[22]:
fig, axes = plt.subplots(3, figsize=(8, 6), sharex=True)
axes[0].set_title("Gaussian versus Stable accuracy over {} windows".format(len(windows2)))
axes[0].plot([w["crps"] for w in windows2], "b<", label="Gaussian")
axes[0].plot([w["crps"] for w in windows3], "r>", label="Stable")
axes[0].set_ylabel("CRPS")
axes[1].plot([w["mae"] for w in windows2], "b<", label="Gaussian")
axes[1].plot([w["mae"] for w in windows3], "r>", label="Stable")
axes[1].set_ylabel("MAE")
axes[2].plot([w["rmse"] for w in windows2], "b<", label="Gaussian")
axes[2].plot([w["rmse"] for w in windows3], "r>", label="Stable")
axes[2].set_ylabel("RMSE")
axes[0].legend(loc="best")
plt.tight_layout()

_images/forecasting_i_31_0.png

请注意,RMSE是评估重尾数据的一个很差的指标。我们的稳定模型有如此重的尾部,以至于它的方差是无限的,所以我们不能期望RMSE收敛,因此偶尔会有边远点。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/411156.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

算法笔试-编程练习-H-02-24

w这套题&#xff0c;侧重模拟和题目理解&#xff0c;只要按照题目描述正常复现整体分数应该不错 一、数据重删 数据重删是一种节约存储空间的技术&#xff0c;通常情况下&#xff0c;在数据存储池内是有很多重复的数据库。重删则是将这些重复的数据块找出并处理的技术。简单地…

Java:jdk8之后新增的时间API

文章目录 为什么要使用新增的API新增了哪些&#xff1f;Local常用方法代码一样的用法 黑马学习笔记 使用新增的 为什么要使用新增的API 新增了哪些&#xff1f; Local 常用方法 代码 package NewTime;import java.time.LocalDate;/*** Author: ggdpzhk* CreateTime: 2024-08-…

竞猜足球核心算法源码

需要实现的功能如下&#xff1a; 仅用于学习 竞猜足球核心算法源码 package com.lotterysource.portsadmin.service; import com.aliyun.oss.common.utils.DateUtil; import com.fasterxml.jackson.core.type.TypeReference; import com.lotterysource.portsadmin.dbprovid…

@ohos.systemParameterEnhance系统参数接口调用:控制设备硬件(执行shell命令方式)

本文介绍如何使用应用ohos.systemParameterEnhance (系统参数)(系统接口)来控制设备硬件&#xff0c;可以通过它在系统中执行一段shell命令&#xff0c;从而实现控制设备的效果。接下来以一个实际的样例来演示如何通过它来控制设备以太网接口 开源地址&#xff1a;https://git…

链表OJ题——环形链表2

文章目录 一、题目链接二、解题思路三、解题代码 一、题目链接 环形链表2 题目描述&#xff1a;在链表有环的基础上&#xff0c;找出环的入口点。 二、解题思路 三、解题代码

超实用的8个无版权、免费、高清图片素材网站整理

不管是设计、文章配图&#xff0c;还是视频制作&#xff0c;图片都至关重要。但是图片版权一直都是困扰很多设计、自媒体以及企业的大问题。现在&#xff0c;因为图片侵权被告的案例已经是司空见惯了&#xff0c;有的公众号甚至因为图片版权问题遭受致命打击。 1. Pexels Pexe…

(经验)SVN降版本,保留版本信息和用户信息。

背景&#xff1a;由于开始公司人数规模小&#xff0c;没有关心SVN最新版本免费对于用户数量限制要求不敏感&#xff0c;随着人数越来越多&#xff0c;公司来了新员工已经添加不了SVN需要注册码了&#xff0c;不利于SVN文件管理的在公司内部的推广。看了好多资料&#xff0c;都没…

信息学奥赛初赛天天练-75-NOIP2016普及组-完善程序-二分答案、二分查找、贪心算法、贪心策略

文章PDF链接: https://pan.baidu.com/s/1SVcGU_rApvoUWrUoviPCiA?pwdht2j 提取码: ht2j 复制这段内容后打开百度网盘手机App&#xff0c;操作更方便哦 1 完善程序 (单选题 &#xff0c;每小题3分&#xff0c;共30分) 郊游活动 有 n名同学参加学校组织的郊游活动&#xff0c…

有没有比较好用的在线翻译工具?实力推荐这4款。

当我们面对外文资料时&#xff0c;可能需要翻阅厚重的词典&#xff0c;耗费大量的时间和精力。在翻译这方面&#xff0c;很多人都十分依赖翻译工具的&#xff0c;因为这些工具只需几秒钟就能给出翻译结果&#xff0c;提高了我们的学习和工作的效率。但是随着翻译工具越来阅读&a…

前后端分离项目实战-通用管理系统搭建(前端Vue3+ElementPlus,后端Springboot+Mysql+Redis)第八篇:Tab标签页的实现

天行健&#xff0c;君子以自强不息&#xff1b;地势坤&#xff0c;君子以厚德载物。 每个人都有惰性&#xff0c;但不断学习是好好生活的根本&#xff0c;共勉&#xff01; 文章均为学习整理笔记&#xff0c;分享记录为主&#xff0c;如有错误请指正&#xff0c;共同学习进步。…

使用C++封装顺序表

作业&#xff1a;使用C手动封装一个顺序表&#xff0c;包含成员数组一个&#xff0c;成员变量N个 #include <iostream>using namespace std;using datatypeint; #define MAX 20struct SeqList { private: //私有datatype *data;int size0; …

【Java】数据类型与变量(二)

目录 3.变量 3.1什么是变量&#xff08;变量的概念&#xff09; 3.2语法格式 ​编辑​编辑3.3整型变量 3.3.1整型变量如何定义 ​编辑 3.3.2长整型变量 3.3.3短整型变量 3.3.4字节型变量 3.4浮点型变量 3.4.1双精度浮点型 3.4.2单精度浮点型 3.4.3单精度浮点型与双…

Google Search Console:完整教程

Google 提供了各种工具来收集和分析网站数据&#xff0c;其中最有价值的工具之一是 Google Search Console &#xff08;GSC&#xff09;。前身为 Google Webmaster Tools&#xff0c;它为 SEO 提供了对网站性能的宝贵见解。自 2015 年推出以来&#xff0c;该平台取得了长足的发…

关机软件项目规划

一、概述 1.1 编写目的 此项目开发规划书的编写主要是为《UPS SNMP卡网络监控系统》中配套使用的关机软件做主要的规划和整合&#xff0c;在开发过程中起到引导作用&#xff0c;以及给使用者提供简要的说明。 1.2 项目背景 关机软件是UPS网络监控适配器项目监控层的组成部分…

黑神化爆火,悟空的八十一难究竟用到了什么数据库?

九九八十一难&#xff0c;第一难。猿神&#xff0c;启动…然后发现先解压缩&#xff0c;后着色编译。就这姿势&#xff0c;这就是爆火的 《黑神话&#xff1a;悟空》单机游戏&#xff0c;哪怕是在工作日&#xff0c;大家仍纷纷涌入这个游戏世界。8月20日&#xff0c;万众瞩目的…

Excel表格合并后同步修改行号,删除重复项,按合并后的列进行排序

Excel合并单元格后每个合并后的行占据多列&#xff0c;如何进行排序 1、全选后选择合并选项中的取消合并单元格 2、选择删除重复项&#xff08;可以直接选定唯一行&#xff09; 3、可以发现合并后的每行占Excel的一行 4、然后制定排序规则 5、序号列下拉重排&#xff08;鼠标放…

智谱开源 CogVideoX-5B 视频生成模型,RTX 3060 显卡可运行;曝 OpenAI 模型「草莓」今秋推出

开发者朋友们大家好&#xff1a; 这里是 「RTE 开发者日报」 &#xff0c;每天和大家一起看新闻、聊八卦。我们的社区编辑团队会整理分享 RTE&#xff08;Real-Time Engagement&#xff09; 领域内「有话题的 新闻 」、「有态度的 观点 」、「有意思的 数据 」、「有思考的 文…

Android Studio Koala下载并安装,测试helloworld.

1、下载&#xff1a; 下载 Android Studio 和应用工具 - Android 开发者 | Android Developers 2、滚动条拉到近最后&#xff0c;各个系统的下载地址&#xff1a; 3、下载完成以后&#xff0c;我们双击运行安装&#xff1a; 如果有路径要修改&#xff0c;则修改下就可以了&a…

【大模型系列篇】预训练模型:BERT GPT

2018 年&#xff0c;Google 首次推出 BERT&#xff08;Bidirectional Encoder Representations from Transformers&#xff09;。该模型是在大量文本语料库上结合无监督和监督学习进行训练的。 BERT 的目标是创建一种语言模型&#xff0c;可以理解句子中单词的上下文和含义&…

新华三H3C HCL配置IS-IS基本配置

实验目标 完成本实验,应该能够达到以下目标。 ●掌握如何在路由器进行单区域IS-IS的基本配置 ●掌握如何在路由器上查看IS-IS路由表、邻居信息 ●掌握如何在路由器上查看IS-IS的LSDB信息 实验拓扑 IP地址表 实验任务 单区域配置&#xff1a; 在本实验任务中,需要在路由器上…