STL之list

1. list的介绍和使用

1.1 list的介绍

  1. list是可以在常数范围内在任意位置进行插入和删除的序列式容器,并且该容器可以前后双向迭代。
  2. list的底层是带头双向循环链表结构,双向链表中每个元素存储在互不相关的独立节点中,在节点中通过指针指向 其前一个元素和后一个元素。
  3. list与forward_list非常相似:最主要的不同在于forward_list是单链表,只能朝前迭代,已让其更简单高效。
  4. 与其他的序列式容器相比(array,vector,deque),list通常在任意位置进行插入、移除元素的执行效率 更好。
  5. 与其他序列式容器相比,list和forward_list最大的缺陷是不支持任意位置的随机访问,比如:要访问list 的第6个元素,必须从已知的位置(比如头部或者尾部)迭代到该位置,在这段位置上迭代需要线性的时间 开销;list还需要一些额外的空间,以保存每个节点的相关联信息(对于存储类型较小元素的大list来说这 可能是一个重要的因素)

1.2 list的使用

1.2.1 list的构造

image-20220803141326709

构造函数(constructor)接口说明
list()构造空的list
list (size_type n, const value_type& val = value_type())构造的list中包含n个值为val的元素
list (const list& x)拷贝构造函数
list (InputIterator first, InputIterator last)用[first, last)区间中的元素构造list

1.2.2 list iterator的使用

从实现结构的角度,迭代器分为三类:

  1. 单向。++ 例如:单链表、unordered_map、unordered_set
  2. 双向。++、-- 例如:双链表、map、set、queue
  3. 随机。++、–、+、- 例如:vector、string、deque

image-20220803142943648

函数声明接口说明
begin() + end()返回第一个元素的迭代器 + 返回最后一个元素的下一个位置的迭代器
rbegin() + rend()返回第一个元素的reverse_iterator,即end位置,返回最后一个元素下一个位置的reverse_iterator,即begin()位置

注意:

  1. begin与end为正向迭代器,对迭代器执行++操作,迭代器向后移动
  2. rbegin(end)与rend(begin)为反向迭代器,对迭代器执行++操作,迭代器向前移动

使用举例:

void test_list1()
{list<int> lt;lt.push_back(1);lt.push_back(2);lt.push_back(3);lt.push_back(4);list<int>::iterator it = lt.begin();while (it != lt.end()){cout << *it << " ";it++;}cout << endl;list<int>::reverse_iterator rit = lt.rbegin();while (rit != lt.rend()){cout << *rit << " ";rit++;}cout << endl;
}

运行截图:

image-20220803143547636

1.2.3 list capacity

函数声明接口说明
empty检测list是否为空,是返回true,否则返回false
size返回list中有效节点的个数

1.2.4 list element access

函数声明接口说明
front返回list的第一个节点中值的引用
back返回list的最后一个节点中值的引用

1.2.5 list modifiers

函数声明接口说明
push_front在list首元素前插入值为val的元素
pop_front删除list中第一个元素
push_back在list尾部插入值为val的元素
pop_back删除list中最后一个元素
insert在list position 位置中插入值为val的元素
erase删除list position位置的元素
swap交换两个list中的元素
clear清空list中的有效元素

代码举例:

list<int> lt;
lt.push_back(1);//尾插
lt.push_front(10);//头插
lt.pop_back();//尾删
lt.pop_front();//头删
lt.insert(lt.begin(), 1);//任意位置插入
lt.erase(lt.begin());//任意位置删除
list<int> l1;
list<int> l2;
l1.swap(l2);//交换l1和l2中的元素
lt.clear();

1.2.6 list的sort接口

image-20220803155635107

使用举例:

void test_list2()
{list<int> lt;lt.push_back(1);lt.push_back(6);lt.push_back(7);lt.push_back(4);lt.push_back(8);lt.push_back(10);lt.push_back(9);lt.sort();list<int>::iterator it = lt.begin();while (it != lt.end()){cout << *it << " ";it++;}cout << endl;
}

运行截图:

image-20220803160248577

1.2.7 list的unique

image-20220803185006764

作用:去除重复元素。前提是必须是有序的链表。

使用举例:

void test_list2()
{list<int> lt;lt.push_back(1);lt.push_back(6);lt.push_back(7);lt.push_back(4);lt.push_back(8);lt.push_back(10);lt.push_back(9);lt.push_back(1);lt.push_back(4);lt.push_back(7);lt.push_back(6);lt.push_back(8);lt.sort();lt.unique();list<int>::iterator it = lt.begin();while (it != lt.end()){cout << *it << " ";it++;}cout << endl;
}

运行截图:

image-20220803185151111

1.2.8 list的splice

image-20220803195451035

注意:在将x插入到*this之后,x中的节点都消失了,即都被添加到了*this中。

使用举例:

void test_list3()
{list<int> l1;l1.push_back(1);l1.push_back(2);l1.push_back(3);l1.push_back(4);list<int> l2;l2.push_back(10);l2.push_back(20);l2.push_back(30);l2.push_back(40);auto it = l1.begin();it++;l1.splice(it, l2);cout << "l1:";for (auto e : l1){cout << e << " ";}cout << endl;cout << "l2:";for (auto e : l2){cout << e << " ";}cout << endl;
}

运行截图:

image-20220803200130459

2.list的模拟实现

2.1 list的代码实现

template<class T>
struct list_node
{list_node<T>* _next;list_node<T>* _prev;T _data;list_node(const T& val = T()):_next(nullptr), _prev(nullptr), _data(val){}
};template<class T, class Ref, class Ptr>
struct __list_iterator
{typedef list_node<T> Node;typedef __list_iterator<T, Ref, Ptr> self;Node* _node;__list_iterator(Node* node):_node(node){}Ref operator*(){return _node->_data;}Ptr operator->(){return &(operator*());//return *_node->_data;}self& operator++(){_node = _node->_next;return *this;}self& operator--(){_node = _node->_prev;return *this;}self operator++(int){self tmp(*this);_node = _node->_next;return tmp;}self operator--(int){self tmp(*this);_node = _node->_prev;return tmp;}bool operator!=(const self& it){return _node != it._node;}bool operator==(const self& it){return _node == it._node;}};template<class T>
class mylist
{typedef list_node<T> Node;public:typedef __list_iterator<T, T&, T*> iterator;typedef __list_iterator<T, const T&, const T*> const_iterator;常规写法//mylist(const mylist<T>& lt)//{//	_head = new Node;//	_head->_next = _head;//	_head->_prev = _head;//	for (auto e : lt)//	{//		push_back(e);//	}//}//现代写法mylist(const mylist<T>& lt){empty_init();mylist<T> tmp(lt.begin(), lt.end());swap(tmp);}mylist<T>& operator=(mylist<T> lt){swap(lt);return *this;}template<class InputIterator>mylist(InputIterator first, InputIterator last){empty_init();_head = new Node();_head->_next = _head;_head->_prev = _head;while (first != last){push_back(*first);++first;}}void empty_init(){_head = new Node();_head->_next = _head;_head->_prev = _head;}void swap(mylist<T>& lt){std::swap(_head, lt._head);}iterator begin(){return iterator(_head->_next);}const_iterator begin()const{return const_iterator(_head->_next);}iterator end(){return iterator(_head);}const_iterator end()const{return const_iterator(_head);}mylist(){_head = new Node();_head->_next = _head;_head->_prev = _head;}void push_back(const T& x){//Node* tail = _head->_prev;//Node* newnode = new Node(x);tail newnode _head//tail->_next = newnode;//newnode->_prev = tail;//newnode->_next = _head;//_head->_prev = newnode;insert(end(), x);}void push_front(const T& x){insert(begin(), x);}iterator erase(iterator pos){assert(pos != end());Node* cur = pos._node;Node* prev = cur->_prev;Node* next = cur->_next;//prev nextprev->_next = next;next->_prev = prev;delete cur;return iterator(next);}void pop_back(){erase(--end());}void pop_front(){erase(begin());}//插入在pos位置之前//prev newnode curiterator insert(iterator pos, const T& x){Node* newNode = new Node(x);Node* cur = pos._node;Node* prev = cur->_prev;prev->_next = newNode;newNode->_prev = prev;newNode->_next = cur;cur->_prev = newNode;return iterator(newNode);}~mylist(){clear();delete _head;_head = nullptr;}void clear(){iterator it = begin();while (it != end()){it = erase(it);}}
private:Node* _head;
};

2.2 list 需要注意的点

2.2.1 ->的重载

问:为什么我们要重载->?

答:当mylist存储的自定义类型,例如下面的类型时:

struct AA
{int _a1;int _a2;
}

然后我们想要支持下面的行为(迭代器模拟的是指针,按道理来说应该支持下面的行为):

cout << it->_a1 << it->_a2 << endl;

所以我们需要对这个进行重载:

T* operator->()
{return &(operator*());//operator*()即_data,所以上面等价于&(_node->_data)
}

问:那么it->_a1是如何访问的呢?

答:

it->等价于it.operator->(),其类型为AA*,所以这个地方还是少了一个->,即接下来的访问方式应该是这样的(it.operator->)->_a1,即真正的表达式应该是这样的:it->->_a1

但是编译器为了可读性进行了优化,即it->_a1相当于it->->_a1,优化以后,省略了一个箭头。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/41412.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

26考研——查找_树形查找_二叉排序树(BST)(7)

408答疑 文章目录 三、树形查找二叉排序树&#xff08;BST&#xff09;二叉排序树中结点值之间的关系二叉树形查找二叉排序树的查找过程示例 向二叉排序树中插入结点插入过程示例 构造二叉排序树的过程构造示例 二叉排序树中删除结点的操作情况一&#xff1a;被删除结点是叶结点…

C++异常处理完全指南:从原理到实战

文章目录 异常的基本概念基本异常抛出与捕获多类型异常捕获异常重新抛出异常安全异常规范&#xff08;noexcept&#xff09;栈展开与析构标准库异常总结 异常的基本概念 异常是程序运行时发生的非预期事件&#xff08;如除零、内存不足&#xff09;。C通过try、catch和throw提…

汽车方向盘开关功能测试的技术解析

随着汽车智能化与电动化的发展&#xff0c;方向盘开关的功能日益复杂化&#xff0c;从传统的灯光、雨刷控制到智能语音、自动驾驶辅助等功能的集成&#xff0c;对开关的可靠性、耐久性及安全性提出了更高要求。本文结合北京沃华慧通测控技术有限公司&#xff08;以下简称“慧通…

matplotlib——南丁格尔玫瑰

南丁格尔玫瑰图&#xff08;Nightingale Rose Chart&#xff09;&#xff0c;是一种特殊形式的柱状图&#xff0c;它以南丁格尔&#xff08;Florence Nightingale&#xff09;命名&#xff0c;她在1858年首次使用这种图表来展示战争期间士兵死亡原因的数据。 它将数据绘制在极坐…

【大模型基础_毛玉仁】4.4 低秩适配方法

目录 4.4 低秩适配方法4.4.1 LoRA1&#xff09;方法实现2&#xff09;参数效率 4.4.2 LoRA 变体1&#xff09;打破低秩瓶颈&#xff08;例ReLoRA&#xff09;2&#xff09;动态秩分配&#xff08;例AdaLoRA&#xff09;3&#xff09;训练过程优化&#xff08;例DoRA&#xff09…

融合YOLO11与行为树的人机协作智能框架:动态工效学优化与自适应安全决策

人工智能技术要真正发挥其价值&#xff0c;必须与生产生活深度融合&#xff0c;为产业发展和人类生活带来实际效益。近年来&#xff0c;基于深度学习的机器视觉技术在工业自动化领域取得了显著进展&#xff0c;其中YOLO&#xff08;You Only Look Once&#xff09;算法作为一种…

Java为什么要使用线程池?

前言1.对线程的管理更加的规范化2.降低创建线程和销毁线程的开销 前言 之前对于Java线程池的理解&#xff0c;一直停留在&#xff1a;对于Java中的多线程机制来说&#xff0c;如果不使用线程池的话&#xff0c;线程的使用就会变得杂乱无章。这一步。一直没有深入去理解为什么其…

告别分库分表,时序数据库 TDengine 解锁燃气监控新可能

达成效果&#xff1a; 从 MySQL 迁移至 TDengine 后&#xff0c;设备数据自动分片&#xff0c;运维更简单。 列式存储可减少 50% 的存储占用&#xff0c;单服务器即可支撑全量业务。 毫秒级漏气报警响应时间控制在 500ms 以内&#xff0c;提升应急管理效率。 新架构支持未来…

TDengine 3.3.2.0 集群报错 Post “http://buildkitsandbox:6041/rest/sql“

原因&#xff1a; 初始化时处于内网环境下&#xff0c;Post “http://buildkitsandbox:6041/rest/sql“ 无法访问 修复&#xff1a; vi /etc/hosts将buildkitsandbox映射为本机节点 外网环境下初始化时没有该问题

【Linux】POSIX信号量与基于环形队列的生产消费者模型

目录 一、POSIX信号量&#xff1a; 接口&#xff1a; 二、基于环形队列的生产消费者模型 环形队列&#xff1a; 单生产单消费实现代码&#xff1a; RingQueue.hpp&#xff1a; main.cc&#xff1a; 多生产多消费实现代码&#xff1a; RingQueue.hpp&#xff1a; main.…

【13】Ajax爬取案例实战

目录 一、准备工作 二、爬取目标 三、初步探索&#xff1a;如何判断网页是经js渲染过的&#xff1f; 四、爬取列表页 4.1 分析Ajax接口逻辑 4.2 观察响应的数据 4.3 代码实现 &#xff08;1&#xff09;导入库 &#xff08;2&#xff09;定义一个通用的爬取方法…

嵌入式八股RTOS与Linux---网络系统篇

前言 关于计网的什么TCP三次握手 几层模型啊TCP报文啥的不在这里讲,会单独分成一个计算机网络模块   这里主要介绍介绍lwip和socket FreeRTOS下的网络接口–移植LWIP 实际上FreeRTOS并不自带网络接口,我们一般会通过移植lwip协议栈让FreeRTOS可以通过网络接口收发数据,具体可…

全分辨率免ROOT懒人精灵-自动化编程思维-设计思路-实战训练

全分辨率免ROOT懒人精灵-自动化编程思维-设计思路-实战训练 1.2025新版懒人精灵-实战红果搜索关键词刷视频&#xff1a;https://www.bilibili.com/video/BV1eK9kY7EWV 2.懒人精灵-全分辨率节点识别&#xff08;红果看广告领金币小实战&#xff09;&#xff1a;https://www.bili…

【更新中】【React】基础版React + Redux实现教程(Vite + React + Redux + TypeScript)

本项目是一个在react中&#xff0c;使用 redux 管理状态的基础版实现教程&#xff0c;用简单的案例练习redux的使用&#xff0c;旨在帮助学习 redux 的状态管理机制&#xff0c;包括 store、action、reducer、dispatch 等核心概念。 项目地址&#xff1a;https://github.com/Yv…

【MySQL】从零开始:掌握MySQL数据库的核心概念(四)

人们之所以不愿改变&#xff0c;是因为害怕未知。但历史唯一不变的事实&#xff0c;就是一切都会改变。 前言 这是我自己学习mysql数据库的第四篇博客总结。后期我会继续把mysql数据库学习笔记开源至博客上。 上一期笔记是关于mysql数据库的表格约束&#xff0c;没看的同学可以…

AP 场景架构设计(一) :OceanBase 读写分离策略解析

说明&#xff1a;本文内容对应的是 OceanBase 社区版&#xff0c;架构部分不涉及企业版的仲裁副本功能。OceanBase社区版和企业版的能力区别详见&#xff1a; 官网链接。 概述​ 当两种类型的业务共同运行在同一个数据库集群上时&#xff0c;这对数据库的配置等条件提出了较高…

CPU架构和微架构

CPU架构&#xff08;CPU Architecture&#xff09; CPU架构是指处理器的整体设计框架&#xff0c;定义了处理器的指令集、寄存器、内存管理方式等。它是处理器设计的顶层规范&#xff0c;决定了软件如何与硬件交互。 主要特点&#xff1a; 指令集架构&#xff08;ISA, Instr…

6.4 模拟专题:LeetCode1419.数青蛙

1.题目链接&#xff1a;数青蛙 - LeetCode 2.题目描述 给定一个字符串 croakOfFrogs&#xff0c;表示青蛙的鸣叫声序列。每个青蛙必须按顺序发出完整的 “croak” 字符&#xff0c;且多只青蛙可以同时鸣叫。要求计算最少需要多少只青蛙才能完成该字符串&#xff0c;若无法完成…

Linux 搭建dns主域解析,和反向解析

#!/bin/bash # DNS主域名服务 # user li 20250325# 检查当前用户是否为root用户 # 因为配置DNS服务通常需要较高的权限&#xff0c;只有root用户才能进行一些关键操作 if [ "$USER" ! "root" ]; then# 如果不是root用户&#xff0c;输出错误信息echo "…

Leetcode 二进制求和

java solution class Solution {public String addBinary(String a, String b) {StringBuilder result new StringBuilder();//首先设置2个指针, 从右往左处理int i a.length() - 1;int j b.length() - 1;int carry 0; //设置进位标志位//从2个字符串的末尾向前遍历while(…