Vision Transformer (ViT) + 代码【详解】

文章目录

    • 1、Vision Transformer (ViT) 介绍
    • 2、patch embedding
    • 3、代码
      • 3.1 class embedding + Positional Embedding
      • 3.2 Transformer Encoder
      • 3.3 classifier
      • 3.4 ViT总代码

1、Vision Transformer (ViT) 介绍

VIT论文的摘要如下,谷歌翻译如下:

  • 虽然 Transformer 架构已成为自然语言处理任务的事实标准,但它在计算机视觉领域的应用仍然有限。在 Vision 中,注意力要么与卷积网络结合使用,要么用于替换卷积网络的某些组件,同时保持其整体结构不变。我们表明,这种对 CNN 的依赖是不必要的,直接应用于图像块序列的纯 Transformer 可以在图像分类任务中表现良好。当对大量数据进行预训练并转移到多个中型或小型图像识别基准(mageNet、CIFAR-100、VTAB 等)时,Vision Transformer (ViT) 与最先进的卷积网络相比取得了出色的结果,同时需要更少的计算资源来训练。

在这里插入图片描述

如何把图像应用到transformer当中去?

  • 可以把图片中的每一个像素当作1个token,如下左图是224x224的像素,一共有50176个token,50176个token在计算self-attention时计算量太大,比如在计算相似度时就需要计算 5017 6 2 50176^2 501762次,所以需要对图像做进一步的处理。把224x224的图像分成14x14个patches,每个patches由16x16个像素组成,把每个patches embedding成一个token,这样图片就变成了14x14个tokens。

在这里插入图片描述

如下图中的右半部分,把图片分成9个patch,把每个patch embedding成固定长度的token,除了做相应的位置编码之外,还添加了额外可学习的class embedding,如下图右半部分的 ∗ * 号。在处理每个token和class embedding计算时,并不是如图中的concat,而是对位相加。相加之后再做Transformer Encoder的操作。
在之前的self attention中,输出的个数等于输入的个数,但是在ViT中,只需要输出class embedding的结果,再经过MLP Head(可以当作全连接层)得到图像的类别。

在这里插入图片描述

2、patch embedding

class PatchEmbed(nn.Module):"""2D Image to Patch Embedding"""def __init__(self, img_size=224, patch_size=16, in_c=3, embed_dim=768, norm_layer=None):super().__init__()img_size = (img_size, img_size)patch_size = (patch_size, patch_size)self.img_size = img_sizeself.patch_size = patch_sizeself.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])self.num_patches = self.grid_size[0] * self.grid_size[1]self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()def forward(self, x):B, C, H, W = x.shapeassert H == self.img_size[0] and W == self.img_size[1], f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."# flatten: [B, C, H, W] -> [B, C, HW]# transpose: [B, C, HW] -> [B, HW, C]x = self.proj(x).flatten(2).transpose(1, 2)x = self.norm(x)return x

代码解释:

196表示一共有196个token,768表示为每个patch/token可以用长度为768的特征向量来表示,

在这里插入图片描述

为了方便理解,下面画了一个简单的示意图,

在这里插入图片描述

3、代码

3.1 class embedding + Positional Embedding

下图左边红框框起来的示意图对应的代码是下图右边红框框起来的代码,
x = self.blocks(x)代码讲解在3.2部分,

在这里插入图片描述

3.2 Transformer Encoder

self.blocks是由多个Block组合,Block具体代码如下,

在这里插入图片描述

Block具体代码,

在这里插入图片描述

多头注意力机制的代码,

在这里插入图片描述

MLP的代码,

在这里插入图片描述

3.3 classifier

在这里插入图片描述

3.4 ViT总代码

"""
original code from rwightman:
https://github.com/rwightman/pytorch-image-models/blob/master/timm/models/vision_transformer.py
"""
from functools import partial
from collections import OrderedDictimport torch
import torch.nn as nndef drop_path(x, drop_prob: float = 0., training: bool = False):"""Drop paths (Stochastic Depth) per sample (when applied in main path of residual blocks).This is the same as the DropConnect impl I created for EfficientNet, etc networks, however,the original name is misleading as 'Drop Connect' is a different form of dropout in a separate paper...See discussion: https://github.com/tensorflow/tpu/issues/494#issuecomment-532968956 ... I've opted forchanging the layer and argument names to 'drop path' rather than mix DropConnect as a layer name and use'survival rate' as the argument."""if drop_prob == 0. or not training:return xkeep_prob = 1 - drop_probshape = (x.shape[0],) + (1,) * (x.ndim - 1)  # work with diff dim tensors, not just 2D ConvNetsrandom_tensor = keep_prob + torch.rand(shape, dtype=x.dtype, device=x.device)random_tensor.floor_()  # binarizeoutput = x.div(keep_prob) * random_tensorreturn outputclass DropPath(nn.Module):"""Drop paths (Stochastic Depth) per sample  (when applied in main path of residual blocks)."""def __init__(self, drop_prob=None):super(DropPath, self).__init__()self.drop_prob = drop_probdef forward(self, x):return drop_path(x, self.drop_prob, self.training)class PatchEmbed(nn.Module):"""2D Image to Patch Embedding"""def __init__(self, img_size=224, patch_size=16, in_c=3, embed_dim=768, norm_layer=None):super().__init__()img_size = (img_size, img_size)patch_size = (patch_size, patch_size)self.img_size = img_sizeself.patch_size = patch_sizeself.grid_size = (img_size[0] // patch_size[0], img_size[1] // patch_size[1])self.num_patches = self.grid_size[0] * self.grid_size[1]self.proj = nn.Conv2d(in_c, embed_dim, kernel_size=patch_size, stride=patch_size)self.norm = norm_layer(embed_dim) if norm_layer else nn.Identity()def forward(self, x):B, C, H, W = x.shapeassert H == self.img_size[0] and W == self.img_size[1], f"Input image size ({H}*{W}) doesn't match model ({self.img_size[0]}*{self.img_size[1]})."# flatten: [B, C, H, W] -> [B, C, HW]# transpose: [B, C, HW] -> [B, HW, C]x = self.proj(x).flatten(2).transpose(1, 2)x = self.norm(x)return xclass Attention(nn.Module):def __init__(self,dim,   # 输入token的dimnum_heads=8,qkv_bias=False,qk_scale=None,attn_drop_ratio=0.,proj_drop_ratio=0.):super(Attention, self).__init__()self.num_heads = num_headshead_dim = dim // num_headsself.scale = qk_scale or head_dim ** -0.5self.qkv = nn.Linear(dim, dim * 3, bias=qkv_bias)self.attn_drop = nn.Dropout(attn_drop_ratio)self.proj = nn.Linear(dim, dim)self.proj_drop = nn.Dropout(proj_drop_ratio)def forward(self, x):# [batch_size, num_patches + 1, total_embed_dim]B, N, C = x.shape# qkv(): -> [batch_size, num_patches + 1, 3 * total_embed_dim]# reshape: -> [batch_size, num_patches + 1, 3, num_heads, embed_dim_per_head]# permute: -> [3, batch_size, num_heads, num_patches + 1, embed_dim_per_head]qkv = self.qkv(x).reshape(B, N, 3, self.num_heads, C // self.num_heads).permute(2, 0, 3, 1, 4)# [batch_size, num_heads, num_patches + 1, embed_dim_per_head]q, k, v = qkv[0], qkv[1], qkv[2]  # make torchscript happy (cannot use tensor as tuple)# transpose: -> [batch_size, num_heads, embed_dim_per_head, num_patches + 1]# @: multiply -> [batch_size, num_heads, num_patches + 1, num_patches + 1]attn = (q @ k.transpose(-2, -1)) * self.scaleattn = attn.softmax(dim=-1)attn = self.attn_drop(attn)# @: multiply -> [batch_size, num_heads, num_patches + 1, embed_dim_per_head]# transpose: -> [batch_size, num_patches + 1, num_heads, embed_dim_per_head]# reshape: -> [batch_size, num_patches + 1, total_embed_dim]x = (attn @ v).transpose(1, 2).reshape(B, N, C)x = self.proj(x)x = self.proj_drop(x)return xclass Mlp(nn.Module):"""MLP as used in Vision Transformer, MLP-Mixer and related networks"""def __init__(self, in_features, hidden_features=None, out_features=None, act_layer=nn.GELU, drop=0.):super().__init__()out_features = out_features or in_featureshidden_features = hidden_features or in_featuresself.fc1 = nn.Linear(in_features, hidden_features)self.act = act_layer()self.fc2 = nn.Linear(hidden_features, out_features)self.drop = nn.Dropout(drop)def forward(self, x):x = self.fc1(x)x = self.act(x)x = self.drop(x)x = self.fc2(x)x = self.drop(x)return xclass Block(nn.Module):def __init__(self,dim,num_heads,mlp_ratio=4.,qkv_bias=False,qk_scale=None,drop_ratio=0.,attn_drop_ratio=0.,drop_path_ratio=0.,act_layer=nn.GELU,norm_layer=nn.LayerNorm):super(Block, self).__init__()self.norm1 = norm_layer(dim)self.attn = Attention(dim, num_heads=num_heads, qkv_bias=qkv_bias, qk_scale=qk_scale,attn_drop_ratio=attn_drop_ratio, proj_drop_ratio=drop_ratio)# NOTE: drop path for stochastic depth, we shall see if this is better than dropout hereself.drop_path = DropPath(drop_path_ratio) if drop_path_ratio > 0. else nn.Identity()self.norm2 = norm_layer(dim)mlp_hidden_dim = int(dim * mlp_ratio)self.mlp = Mlp(in_features=dim, hidden_features=mlp_hidden_dim, act_layer=act_layer, drop=drop_ratio)def forward(self, x):x = x + self.drop_path(self.attn(self.norm1(x)))x = x + self.drop_path(self.mlp(self.norm2(x)))return xclass VisionTransformer(nn.Module):def __init__(self, img_size=224, patch_size=16, in_c=3, num_classes=1000,embed_dim=768, depth=12, num_heads=12, mlp_ratio=4.0, qkv_bias=True,qk_scale=None, representation_size=None, distilled=False, drop_ratio=0.,attn_drop_ratio=0., drop_path_ratio=0., embed_layer=PatchEmbed, norm_layer=None,act_layer=None):"""Args:img_size (int, tuple): input image sizepatch_size (int, tuple): patch sizein_c (int): number of input channelsnum_classes (int): number of classes for classification headembed_dim (int): embedding dimensiondepth (int): depth of transformernum_heads (int): number of attention headsmlp_ratio (int): ratio of mlp hidden dim to embedding dimqkv_bias (bool): enable bias for qkv if Trueqk_scale (float): override default qk scale of head_dim ** -0.5 if setrepresentation_size (Optional[int]): enable and set representation layer (pre-logits) to this value if setdistilled (bool): model includes a distillation token and head as in DeiT modelsdrop_ratio (float): dropout rateattn_drop_ratio (float): attention dropout ratedrop_path_ratio (float): stochastic depth rateembed_layer (nn.Module): patch embedding layernorm_layer: (nn.Module): normalization layer"""super(VisionTransformer, self).__init__()self.num_classes = num_classesself.num_features = self.embed_dim = embed_dim  # num_features for consistency with other modelsself.num_tokens = 2 if distilled else 1norm_layer = norm_layer or partial(nn.LayerNorm, eps=1e-6)act_layer = act_layer or nn.GELUself.patch_embed = embed_layer(img_size=img_size, patch_size=patch_size, in_c=in_c, embed_dim=embed_dim)num_patches = self.patch_embed.num_patchesself.cls_token = nn.Parameter(torch.zeros(1, 1, embed_dim))self.dist_token = nn.Parameter(torch.zeros(1, 1, embed_dim)) if distilled else Noneself.pos_embed = nn.Parameter(torch.zeros(1, num_patches + self.num_tokens, embed_dim))self.pos_drop = nn.Dropout(p=drop_ratio)dpr = [x.item() for x in torch.linspace(0, drop_path_ratio, depth)]  # stochastic depth decay ruleself.blocks = nn.Sequential(*[Block(dim=embed_dim, num_heads=num_heads, mlp_ratio=mlp_ratio, qkv_bias=qkv_bias, qk_scale=qk_scale,drop_ratio=drop_ratio, attn_drop_ratio=attn_drop_ratio, drop_path_ratio=dpr[i],norm_layer=norm_layer, act_layer=act_layer)for i in range(depth)])self.norm = norm_layer(embed_dim)# Representation layerif representation_size and not distilled:self.has_logits = Trueself.num_features = representation_sizeself.pre_logits = nn.Sequential(OrderedDict([("fc", nn.Linear(embed_dim, representation_size)),("act", nn.Tanh())]))else:self.has_logits = Falseself.pre_logits = nn.Identity()# Classifier head(s)self.head = nn.Linear(self.num_features, num_classes) if num_classes > 0 else nn.Identity()self.head_dist = Noneif distilled:self.head_dist = nn.Linear(self.embed_dim, self.num_classes) if num_classes > 0 else nn.Identity()# Weight initnn.init.trunc_normal_(self.pos_embed, std=0.02)if self.dist_token is not None:nn.init.trunc_normal_(self.dist_token, std=0.02)nn.init.trunc_normal_(self.cls_token, std=0.02)self.apply(_init_vit_weights)def forward_features(self, x):# [B, C, H, W] -> [B, num_patches, embed_dim]x = self.patch_embed(x)  # [B, 196, 768]# [1, 1, 768] -> [B, 1, 768]cls_token = self.cls_token.expand(x.shape[0], -1, -1)if self.dist_token is None:x = torch.cat((cls_token, x), dim=1)  # [B, 197, 768]else:x = torch.cat((cls_token, self.dist_token.expand(x.shape[0], -1, -1), x), dim=1)x = self.pos_drop(x + self.pos_embed)x = self.blocks(x)x = self.norm(x)if self.dist_token is None:return self.pre_logits(x[:, 0])else:return x[:, 0], x[:, 1]def forward(self, x):x = self.forward_features(x)if self.head_dist is not None:x, x_dist = self.head(x[0]), self.head_dist(x[1])if self.training and not torch.jit.is_scripting():# during inference, return the average of both classifier predictionsreturn x, x_distelse:return (x + x_dist) / 2else:x = self.head(x)return xdef _init_vit_weights(m):"""ViT weight initialization:param m: module"""if isinstance(m, nn.Linear):nn.init.trunc_normal_(m.weight, std=.01)if m.bias is not None:nn.init.zeros_(m.bias)elif isinstance(m, nn.Conv2d):nn.init.kaiming_normal_(m.weight, mode="fan_out")if m.bias is not None:nn.init.zeros_(m.bias)elif isinstance(m, nn.LayerNorm):nn.init.zeros_(m.bias)nn.init.ones_(m.weight)def vit_base_patch16_224(num_classes: int = 1000):"""ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).ImageNet-1k weights @ 224x224, source https://github.com/google-research/vision_transformer.weights ported from official Google JAX impl:链接: https://pan.baidu.com/s/1zqb08naP0RPqqfSXfkB2EA  密码: eu9f"""model = VisionTransformer(img_size=224,patch_size=16,embed_dim=768,depth=12,num_heads=12,representation_size=None,num_classes=num_classes)return modeldef vit_base_patch16_224_in21k(num_classes: int = 21843, has_logits: bool = True):"""ViT-Base model (ViT-B/16) from original paper (https://arxiv.org/abs/2010.11929).ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.weights ported from official Google JAX impl:https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch16_224_in21k-e5005f0a.pth"""model = VisionTransformer(img_size=224,patch_size=16,embed_dim=768,depth=12,num_heads=12,representation_size=768 if has_logits else None,num_classes=num_classes)return modeldef vit_base_patch32_224(num_classes: int = 1000):"""ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929).ImageNet-1k weights @ 224x224, source https://github.com/google-research/vision_transformer.weights ported from official Google JAX impl:链接: https://pan.baidu.com/s/1hCv0U8pQomwAtHBYc4hmZg  密码: s5hl"""model = VisionTransformer(img_size=224,patch_size=32,embed_dim=768,depth=12,num_heads=12,representation_size=None,num_classes=num_classes)return modeldef vit_base_patch32_224_in21k(num_classes: int = 21843, has_logits: bool = True):"""ViT-Base model (ViT-B/32) from original paper (https://arxiv.org/abs/2010.11929).ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.weights ported from official Google JAX impl:https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_base_patch32_224_in21k-8db57226.pth"""model = VisionTransformer(img_size=224,patch_size=32,embed_dim=768,depth=12,num_heads=12,representation_size=768 if has_logits else None,num_classes=num_classes)return modeldef vit_large_patch16_224(num_classes: int = 1000):"""ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).ImageNet-1k weights @ 224x224, source https://github.com/google-research/vision_transformer.weights ported from official Google JAX impl:链接: https://pan.baidu.com/s/1cxBgZJJ6qUWPSBNcE4TdRQ  密码: qqt8"""model = VisionTransformer(img_size=224,patch_size=16,embed_dim=1024,depth=24,num_heads=16,representation_size=None,num_classes=num_classes)return modeldef vit_large_patch16_224_in21k(num_classes: int = 21843, has_logits: bool = True):"""ViT-Large model (ViT-L/16) from original paper (https://arxiv.org/abs/2010.11929).ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.weights ported from official Google JAX impl:https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch16_224_in21k-606da67d.pth"""model = VisionTransformer(img_size=224,patch_size=16,embed_dim=1024,depth=24,num_heads=16,representation_size=1024 if has_logits else None,num_classes=num_classes)return modeldef vit_large_patch32_224_in21k(num_classes: int = 21843, has_logits: bool = True):"""ViT-Large model (ViT-L/32) from original paper (https://arxiv.org/abs/2010.11929).ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.weights ported from official Google JAX impl:https://github.com/rwightman/pytorch-image-models/releases/download/v0.1-vitjx/jx_vit_large_patch32_224_in21k-9046d2e7.pth"""model = VisionTransformer(img_size=224,patch_size=32,embed_dim=1024,depth=24,num_heads=16,representation_size=1024 if has_logits else None,num_classes=num_classes)return modeldef vit_huge_patch14_224_in21k(num_classes: int = 21843, has_logits: bool = True):"""ViT-Huge model (ViT-H/14) from original paper (https://arxiv.org/abs/2010.11929).ImageNet-21k weights @ 224x224, source https://github.com/google-research/vision_transformer.NOTE: converted weights not currently available, too large for github release hosting."""model = VisionTransformer(img_size=224,patch_size=14,embed_dim=1280,depth=32,num_heads=16,representation_size=1280 if has_logits else None,num_classes=num_classes)return model

参考:
1、https://65d8gk.axshare.com/?id=hk98lb&p=%E7%BD%91%E7%BB%9C%E7%BB%93%E6%9E%84&g=1&sc=3
2、哔哩哔哩视频
3、https://enzo-miman.github.io/#/2_transformer%E4%B8%8EDETR?id=transformer
4、https://github.com/Enzo-MiMan/cv_related_collections/blob/main/transformer_DETR/vision_transformer/vit_model.py

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/415705.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《JavaEE进阶》----10.<SpringMVC应用分层:【三层架构】>

本篇博客我们主要讲解 1.应用的分层:三层架构 2.Spring MVC和三层架构的区别和联系 3.软件设计原则:高内聚低耦合 4.应用分层的好处 5.通过应用分层后的代码示例 一、三层架构简介 阿里开发手册中,关于工程结构部分,定义了常见工程的应用分层结构: 上图…

【Java 基础】:三大特征之多态

✨ 杏花疏影里,吹笛到天明 🌏 📃个人主页:island1314 🔥个人专栏:java学习 ⛺️ 欢迎关注:👍点赞 👂&…

u盘格式化数据还能恢复吗?点击了解实用教程

U盘是电子数据存储设备,我们主要用它来转移数据、随身携带数据等。同时U盘在使用过程中常会遇到问题,比如U盘中毒,U盘中毒会导致里面保存的数据文件无法读取,我们需要进行U盘格式化。格式化之后的U盘才可以继续使用,那…

软件测试-Selenium+python自动化测试

目录 会用到谷歌浏览器Chrome测试,需要下载一个Chromedriver(Chrome for Testing availability)对应自己的浏览器版本号选择。 一、元素定位 对html网页中的元素进行定位,同时进行部分操作。 1.1一个简单的模板 from selenium import webdriver from selenium.webdrive…

本地部署AList并挂载小雅超集结合内网穿透实现无公网IP远程访问

文章目录 前言1. 本地部署AList2. AList挂载网盘3. 部署小雅alist3.1 Token获取3.2 部署小雅3.3 挂载小雅alist到AList中 4. Cpolar内网穿透安装5. 创建公网地址6. 配置固定公网地址 💡 推荐 前些天发现了一个巨牛的人工智能学习网站,通俗易懂&#xff…

42.接雨水

42.接雨水 给定 n 个非负整数表示每个宽度为 1 的柱子的高度图,计算按此排列的柱子,下雨之后能接多少雨水。 示例 1: 输入:height [0,1,0,2,1,0,1,3,2,1,2,1] 输出:6 解释:上面是由数组 [0,1,0,2,1,0,1…

一文搞懂微服务架构之限流

前置知识 限流是通过限制住流量大小来保护系统,能够解决异常突发流量打崩系统的问题。例如常见的某个攻击者在攻击你维护的系统,那么限流就是极大程度上保护住你的系统。 算法 限流算法也可以像负载均衡算法那样,划分成静态算法和动态算法…

【Java】—— Java面向对象高级:关键字static的使用

目录 1. 关键字:static 1.1 类属性、类方法的设计思想 1.2 static关键字 1.3 静态变量 1.3.1 语法格式 1.3.2 静态变量的特点 1.4 静态方法 1.4.1 语法格式 1.4.2 静态方法的特点 1.5 练习 1. 关键字:static 回顾类中的实例变量(即…

Android - Windows平台下Android Studio使用系统的代理

这应该是第一篇Android的博文吧。以后应该会陆续更新的。记录学习Android的点点滴滴。 之前也看过,不过看完书就忘了,现在重拾Android,记录学习历程。 为何要用代理 因为更新gradle太慢了。 如何使用系统的代理 先找到系统代理的ip和端口。…

C++学习笔记----6、内存管理(一)---- 使用动态内存(3)

3.2、对象数组 对象数组与原型/基础类型的数组没有什么不同,除了元素的初始化之外。当你使用new[N]去分配N个对象,就把N个连续的块空间分配出去了,每一个块空间可以放一个单独的对象。对于对象数组,New[]对每一个对象自动调用0参数…

激光雷达产品介绍

与传统激光雷达线性重复式的扫描方式不同,Livox mid系列激光雷达扫描路径不会重复。且视场中激光照射到的区域面积会随时间增大,这就意味着视场覆盖率随时间推移而显著提高。 内容参考自《解构大疆旗下 Livox Mid 激光雷达非重复扫描技术》作者&#xff…

【C++11(一)之入门基础)】

文章目录 C简介统一的列表初始化{}初始化 std::initializer_liststd::initializer_list是什么类型:std::initializer_list使用场景: 声明autodecltypenullptr STL中一些变化 C简介 在2003年C标准委员会曾经提交了一份技术勘误表(…

#ARM开发 笔记

课程介绍 ARM开发 --> Linux移植 --> 驱动开发 前后联系:ARM和系统移植为驱动开发学习做准备工作 所需知识:C语言基础及STM32需要的硬件知识 学习方法 学习流程、思想和解决问题的方法即可 知道驱动的基本框架以及基本开发要求 底层课程导学 接口技…

linux小程序-进度条

文章目录 pro.hpro.cmain.cmakefile测试 pro.h #pragma once#include <stdio.h>typedef void(*callback_t)(double, double);void probar(double total, double current);pro.c #include "pro.h" #include <string.h> #include <unistd.h> #defi…

webshell绕过样本初体验

目录 一&#xff1a;前景 二&#xff1a;样本 样本一&#xff1a; 样本二&#xff1a; 样本三&#xff1a; 样本4&#xff1a; 样本5&#xff1a; 一&#xff1a;前景 在我们日常的网站中百分之一百是存在一些安全设备来拦截我们的webshell的&#xff0c;一般情况…

Kafka大厂面试14问(附答案)

怎么保证顺序消费&#xff1f; 同一个生产者发送到同一分区的消息&#xff0c;先发送的比后发送的offset要小。同一生产者发送到不同分区的消息&#xff0c;消息顺序无法保证。 怎么解决这个问题&#xff1f; 给一个topic只设置一个分区 相同key会发给一个分区 怎么保证幂…

[有彩蛋]大模型独角兽阶跃星辰文生图模型Step-1X上线,效果具说很炸裂?快来看一手实测!

先简单介绍一下阶跃星辰吧 公司的创始人兼CEO是姜大昕博士&#xff0c;他在微软担任过全球副总裁&#xff0c;同时也是微软亚洲互联网工程研究院的副院长和首席科学家。 2024年3月&#xff0c;阶跃星辰发布了Step-2万亿参数MoE语言大模型预览版&#xff0c;这是国内初创公司首…

Centos7通过reposync搭建本地Yum源

目录 1. 服务端搭建 1.1. 安装相关软件包 1.2. 加载几个常用的yum源 1.3. 创建文件保存目录 1.4. 把各仓库同步到本地 1.5. 生成仓库信息 1.6. 定时任务更新仓库 1.7. nginx配置下载服务 1.8. 内网测试nginx服务配置是否正确 2. 客户端配置 前言&#xff1a;之前使用…

Nginx负载均衡数据流分析

1、各机器ip信息 客户端IP&#xff1a;192.168.3.239 Nginx代理服务器IP&#xff1a;192.168.3.241 服务端IP&#xff1a;192.168.3.238 2、架构图&#xff08;略&#xff09; 3、 下图是在服务端上面的抓包分析。 下图是在客户端上面的抓包分析&#xff1a; 下图是在代理服务…

动态路由和路由导航守卫及其案例分析

为什么需要动态路由&#xff1f; 动态路由其实用的不多&#xff0c;在实际开发中&#xff0c;如果遇到权限分配问题&#xff0c;比如对于一个公司人员的后台管理系统&#xff0c;那对不同成员的权限肯定不同&#xff0c;对于人事部&#xff0c;他们有权限进入成员表对人员的流…