鸿蒙轻内核M核源码分析系列五 时间管理

往期知识点记录:

  • 鸿蒙(HarmonyOS)应用层开发(北向)知识点汇总
  • 持续更新中……

在鸿蒙轻内核源码分析上一篇文章中,我们剖析了中断的源码,简单提到了Tick中断。本文会继续分析Tick和时间相关的源码,给读者介绍鸿蒙轻内核的时间管理模块。本文中所涉及的源码,以OpenHarmony LiteOS-M内核为例,均可以在开源站点https://gitee.com/openharmony/kernel_liteos_m 获取。

时间管理模块以系统时钟为基础,可以分为2部分,一部分是SysTick中断,为任务调度提供必要的时钟节拍;另外一部分是,给应用程序提供所有和时间有关的服务,如时间转换、统计功能。

系统时钟是由定时器/计数器产生的输出脉冲触发中断产生的,一般定义为整数或长整数。输出脉冲的周期叫做一个“时钟滴答”,也称为时标或者TickTick是操作系统的基本时间单位,由用户配置的每秒Tick数决定。如果用户配置每秒的Tick数目为1000,则1个Tick等于1ms的时长。另外一个计时单位是Cycle,这是系统最小的计时单位。Cycle的时长由系统主时钟频率决定,系统主时钟频率就是每秒钟的Cycle数,对于216 MHzCPU,1秒产生216000000个cycles

用户以秒、毫秒为单位计时,而操作系统以Tick为单位计时,当用户需要对系统进行操作时,例如任务挂起、延时等,此时可以使用时间管理模块对Tick和秒/毫秒进行转换。


下面,我们剖析下时间管理模块的源代码,若涉及开发板部分,以开发板工程targets\cortex-m7_nucleo_f767zi_gcc\为例进行源码分析。

1、时间管理初始化和启动

我们先看下时间管理模块的相关配置,然后再剖析如何初始化,如何启动。

1.1 时间管理相关的配置

时间管理模块涉及3个配置项,系统时钟OS_SYS_CLOCK、每秒Tick数目LOSCFG_BASE_CORE_TICK_PER_SECOND两个配置选项,还有宏LOSCFG_BASE_CORE_TICK_HW_TIMELOSCFG_BASE_CORE_TICK_HW_TIME默认关闭,开启时,需要提供定制函数VOID platform_tick_handler(VOID),在Tick中断处理函数中执行定制操作。这些配置项在模板开发板工程目录的文件target_config.h中定义,如文件targets\cortex-m7_nucleo_f767zi_gcc\target_config.h中定义如下:

#define OS_SYS_CLOCK                                        96000000
#define LOSCFG_BASE_CORE_TICK_PER_SECOND                    (1000UL)
#define LOSCFG_BASE_CORE_TICK_HW_TIME                       0

1.2 时间管理初始化和启动

函数INT32 main(VOID)会调用kernel\src\los_init.c中的函数UINT32 LOS_Start(VOID)启动系统,该函数会调用启动调度函数UINT32 HalStartSchedule(OS_TICK_HANDLER handler)。源码如下:

LITE_OS_SEC_TEXT_INIT UINT32 LOS_Start(VOID)
{return HalStartSchedule(OsTickHandler);
}

函数UINT32 HalTickStart(OS_TICK_HANDLER *handler)定义在kernel\arch\arm\cortex-m7\gcc\los_context.c,源码如下。其中函数参数为Tick中断处理函数OsTickHandler(),后文会分析该tick中断处理函数。⑴处代码继续调用函数进一步调用函数HalTickStart(handler)来设置Tick中断启动。⑵处会调用汇编函数HalStartToRun开始运行系统,后续任务调度系列再详细分析该汇编函数。

LITE_OS_SEC_TEXT_INIT UINT32 HalStartSchedule(OS_TICK_HANDLER handler)
{UINT32 ret;
⑴  ret = HalTickStart(handler);if (ret != LOS_OK) {return ret;}
⑵  HalStartToRun();return LOS_OK; /* never return */
}

函数HalTickStart(handler)定义在文件kernel\arch\arm\cortex-m7\gcc\los_timer.c,源码如下,我们分析下函数的代码实现。⑴处校验下时间管理模块的配置项的合法性。在开启宏LOSCFG_USE_SYSTEM_DEFINED_INTERRUPT时,会使用系统定义的中断。会执行⑵处的代码,调用定义在文件kernel\arch\arm\cortex-m7\gcc\los_interrupt.c中的函数OsSetVector()设置中断向量,该函数在中断系列会详细分析。⑶处设置全局变量g_sysClock为系统时钟,g_cyclesPerTick为每tick对应的cycle数目,g_ullTickCount初始化为0,表示系统tick中断发生次数。⑷处调用定义在targets\cortex-m7_nucleo_f767zi_gcc\Drivers\CMSIS\Include\core_cm7.h文件中的内联函数uint32_t SysTick_Config(uint32_t ticks),初始化、启动系统定时器Systick和中断。

WEAK UINT32 HalTickStart(OS_TICK_HANDLER *handler)
{UINT32 ret;⑴  if ((OS_SYS_CLOCK == 0) ||(LOSCFG_BASE_CORE_TICK_PER_SECOND == 0) ||(LOSCFG_BASE_CORE_TICK_PER_SECOND > OS_SYS_CLOCK)) {return LOS_ERRNO_TICK_CFG_INVALID;}#if (LOSCFG_USE_SYSTEM_DEFINED_INTERRUPT == 1)
#if (OS_HWI_WITH_ARG == 1)OsSetVector(SysTick_IRQn, (HWI_PROC_FUNC)handler, NULL);
#else
⑵  OsSetVector(SysTick_IRQn, (HWI_PROC_FUNC)handler);
#endif
#endif⑶  g_sysClock = OS_SYS_CLOCK;g_cyclesPerTick = OS_SYS_CLOCK / LOSCFG_BASE_CORE_TICK_PER_SECOND;g_ullTickCount = 0;⑷  ret = SysTick_Config(g_cyclesPerTick);if (ret == 1) {return LOS_ERRNO_TICK_PER_SEC_TOO_SMALL;}return LOS_OK;
}

1.3 Tick中断处理函数OsTickHandler()

文件kernel\src\los_tick.c定义的函数VOID OsTickHandler(VOID),是时间管理模块中执行最频繁的函数,每当Tick中断发生时就会调用该函数。我们分析下该函数的源码,⑴处如果开启宏LOSCFG_BASE_CORE_TICK_HW_TIME,会调用定制的tick处理函数platform_tick_handler(),默认不开启。⑵处会更新全局变量g_ullTickCount,⑶处如果开启宏LOSCFG_BASE_CORE_TIMESLICE,会检查当前运行任务的时间片,在后续任务模块会详细分析下函数OsTimesliceCheck()。⑷处会遍历任务的排序链表,检查是否有超时的任务。⑸处如果支持定时器特性,会检查定时器是否超时。

源码如下:

LITE_OS_SEC_TEXT VOID OsTickHandler(VOID)
{
#if (LOSCFG_BASE_CORE_TICK_HW_TIME == 1)
⑴  platform_tick_handler();
#endif⑵  g_ullTickCount++;#if (LOSCFG_BASE_CORE_TIMESLICE == 1)
⑶  OsTimesliceCheck();
#endif⑷   OsTaskScan();  // task timeout scan#if (LOSCFG_BASE_CORE_SWTMR == 1)
⑸  (VOID)OsSwtmrScan();
#endif
}

2、LiteOS内核时间管理常用操作

时间管理提供下面几种功能,时间转换、时间统计等,这些函数定义在文件kernel\src\los_tick.c,我们剖析下这些操作的源代码实现。

2.1 时间转换操作

2.1.1 毫秒转换成Tick

函数UINT32 LOS_MS2Tick(UINT32 millisec)把输入参数毫秒数UINT32 millisec可以转化为Tick数目。代码中OS_SYS_MS_PER_SECOND,即1秒等于1000毫秒。时间转换也比较简单,知道一秒多少Tick,除以OS_SYS_MS_PER_SECOND,得出1毫秒多少Tick,然后乘以millisec,计算出Tick数目的结果值并返回。

LITE_OS_SEC_TEXT_MINOR UINT32 LOS_MS2Tick(UINT32 millisec)
{if (millisec == OS_NULL_INT) {return OS_NULL_INT;}return ((UINT64)millisec * LOSCFG_BASE_CORE_TICK_PER_SECOND) / OS_SYS_MS_PER_SECOND;
}
2.1.2 Tick转化为毫秒

函数UINT32 LOS_Tick2MS(UINT32 tick)把输入参数Tick数目转换为毫秒数。时间转换也比较简单,ticks数目除以每秒多少Tick数值LOSCFG_BASE_CORE_TICK_PER_SECOND,计算出多少秒,然后转换成毫秒,计算出结果值并返回。

LITE_OS_SEC_TEXT_MINOR UINT32 LOS_Tick2MS(UINT32 ticks)
{return ((UINT64)ticks * OS_SYS_MS_PER_SECOND) / LOSCFG_BASE_CORE_TICK_PER_SECOND;
}
2.1.3 Cycle数目转化为毫秒

介绍转换函数之前,先看下一个CpuTick结构体,结构体比较简单,就2个成员,分别表示一个UINT64类型数据的高、低32位数值。

typedef struct tagCpuTick {UINT32 cntHi; /* < 一个64位数值的高32位 */UINT32 cntLo; /* < 一个64位数值的低32位 */
} CpuTick;

继续看转换函数OsCpuTick2MS(),它可以把CpuTick类型表示的cycle数目转换为对应的毫秒数,输出毫秒数据的高、低32位数值。看下具体的代码,⑴处校验参数是否为空指针,⑵处检查系统时钟是否配置。⑶处把CpuTick结构体表示的cycle数目转化为UINT64类型数据。⑷处进行数值计算,(DOUBLE)g_sysClock / OS_SYS_MS_PER_SECOND得到每毫秒多少个cycle数,然后和tmpCpuTick做除法运算,得到cycle数目对应的毫秒数目。⑸处把DOUBLE类型转换为UINT64类型,然后执行⑹,分别把结果数值的高、低64位赋值给*msLo*msHi

LITE_OS_SEC_TEXT_INIT UINT32 OsCpuTick2MS(CpuTick *cpuTick, UINT32 *msHi, UINT32 *msLo)
{UINT64 tmpCpuTick;DOUBLE temp;⑴  if ((cpuTick == NULL) || (msHi == NULL) || (msLo == NULL)) {return LOS_ERRNO_SYS_PTR_NULL;}⑵  if (g_sysClock == 0) {return LOS_ERRNO_SYS_CLOCK_INVALID;}
⑶  tmpCpuTick = ((UINT64)cpuTick->cntHi << OS_SYS_MV_32_BIT) | cpuTick->cntLo;
⑷  temp = tmpCpuTick / ((DOUBLE)g_sysClock / OS_SYS_MS_PER_SECOND);tmpCpuTick = (UINT64)temp;*msLo = (UINT32)tmpCpuTick;*msHi = (UINT32)(tmpCpuTick >> OS_SYS_MV_32_BIT);return LOS_OK;
}
2.1.4 Cycle数目转化为微秒

转换函数OsCpuTick2US(),它可以把CpuTick类型表示的cycle数目转换为对应的毫秒数,输出毫秒数据的高、低32位数值。该函数和OsCpuTick2MS()类似,自行阅读即可。

LITE_OS_SEC_TEXT_INIT UINT32 OsCpuTick2US(CpuTick *cpuTick, UINT32 *usHi, UINT32 *usLo)
{UINT64 tmpCpuTick;DOUBLE temp;if ((cpuTick == NULL) || (usHi == NULL) || (usLo == NULL)) {return LOS_ERRNO_SYS_PTR_NULL;}if (g_sysClock == 0) {return LOS_ERRNO_SYS_CLOCK_INVALID;}tmpCpuTick = ((UINT64)cpuTick->cntHi << OS_SYS_MV_32_BIT) | cpuTick->cntLo;temp = tmpCpuTick / ((DOUBLE)g_sysClock / OS_SYS_US_PER_SECOND);tmpCpuTick = (UINT64)temp;*usLo = (UINT32)tmpCpuTick;*usHi = (UINT32)(tmpCpuTick >> OS_SYS_MV_32_BIT);return LOS_OK;
}

2.2 时间统计操作

2.2.1 获取每个Tick等于多少Cycle数

函数UINT32 LOS_CyclePerTickGet(VOID)计算1个tick等于多少cycleg_sysClock系统时钟表示1秒多少cycleLOSCFG_BASE_CORE_TICK_PER_SECOND一秒多少tick,相除计算出1 tick多少cycle数,即g_cyclesPerTick = g_sysClock / LOSCFG_BASE_CORE_TICK_PER_SECOND

LITE_OS_SEC_TEXT_MINOR UINT32 LOS_CyclePerTickGet(VOID)
{return g_cyclesPerTick;
}
2.2.2 获取自系统启动以来的Tick数

UINT64 LOS_TickCountGet(VOID)函数计算自系统启动以来的Tick中断的次数。需要注意,在关中断的情况下不进行计数,不能作为准确时间使用。每次Tick中断发生时,在函数VOID OsTickHandler(VOID)中会更新g_ullTickCount数据。

LITE_OS_SEC_TEXT_MINOR UINT64 LOS_TickCountGet(VOID)
{return g_ullTickCount;
}
2.2.3 获取系统时钟

UINT32 LOS_SysClockGet(VOID)函数获取配置的系统时钟。

UINT32 LOS_SysClockGet(VOID)
{return g_sysClock;
}
2.2.4 获取系统启动以来的Cycle数

函数VOID HalGetCpuCycle(UINT32 *cntHi, UINT32 *cntLo)定义在文件kernel\arch\arm\cortex-m7\gcc\los_timer.c中,该函数获取系统启动以来的Cycle数。返回结果按高、低32位的无符号数值UINT32 *cntHi, UINT32 *cntLo分别返回。

我们看下该函数的源码。先关中断,然后⑴处获取启动启动以来的Tick数目。⑵处通过读取当前值寄存器SysTick Current Value Register,获取hwCycle。⑶处表示中断控制和状态寄存器Interrupt Control and State Register的第TICK_CHECK位为1时,表示挂起systick中断,tick没有计数,需要加1校准。⑷处根据swTickg_cyclesPerTickhwCycle计算出自系统启动以来的Cycle数。⑸处获取Cycle数的高、低32位的无符号数值,然后开中断、返回。

LITE_OS_SEC_TEXT_MINOR VOID HalGetCpuCycle(UINT32 *cntHi, UINT32 *cntLo)
{UINT64 swTick;UINT64 cycle;UINT32 hwCycle;UINTPTR intSave;intSave = LOS_IntLock();⑴  swTick = g_ullTickCount;
⑵  hwCycle = SysTick->VAL;⑶  if ((SCB->ICSR & TICK_CHECK) != 0) {hwCycle = SysTick->VAL;swTick++;}⑷  cycle = (((swTick) * g_cyclesPerTick) + (g_cyclesPerTick - hwCycle));⑸  *cntHi = cycle >> SHIFT_32_BIT;*cntLo = cycle & CYCLE_CHECK;LOS_IntRestore(intSave);return;
}

小结

本文带领大家一起剖析了鸿蒙轻内核的时间管理模块的源代码。时间管理模块为任务调度提供必要的时钟节拍,会向应用程序提供所有和时间有关的服务,如时间转换、统计、延迟功能。后续也会陆续推出更多的分享文章,敬请期待,也欢迎大家分享学习、使用鸿蒙轻内核的心得,有任何问题、建议,都可以留言给我们: https://gitee.com/openharmony/kernel_liteos_m/issues 。为了更容易找到鸿蒙轻内核代码仓,建议访问 https://gitee.com/openharmony/kernel_liteos_m,关注Watch、点赞Star、并Fork到自己账户下,谢谢。

写在最后

如果你觉得这篇内容对你还蛮有帮助,我想邀请你帮我三个小忙

  • 点赞,转发,有你们的 『点赞和评论』,才是我创造的动力。
  • 关注小编,同时可以期待后续文章ing🚀,不定期分享原创知识。
  • 想要获取更多完整鸿蒙最新学习资源,请看下图提示:

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/417449.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

法规探讨 | 《医疗器械管理法(草案征求意见稿)》初探(1)

昨日&#xff0c;国家药监局综合司正式公开征求《中华人民共和国医疗器械管理法&#xff08;草案征求意见稿&#xff09;》的意见&#xff0c;标志着我国医疗器械管理领域即将进入新的发展阶段。相较于现行的《医疗器械监督管理条例》&#xff0c;《医疗器械法》不仅沿袭了《条…

【深入解析】AI工作流中的HTTP组件:客户端与服务端执行的区别

在当今快速发展的技术环境中&#xff0c;AI工作流的设计和实现变得愈发重要。尤其是在处理HTTP组件时&#xff0c;前端执行与后端执行之间的区别&#xff0c;往往会对系统的安全性和数据的准确性产生深远的影响。今天&#xff0c;我们就来深入探讨这一话题&#xff0c;揭示前端…

vscode+django开发后端快速测试接口(轻量版,免postman安装)

目录 背景 步骤 安装插件 编写测试文件 示例一&#xff1a;get接口类型 示例二&#xff1a;post接口类型 示例三&#xff1a;delete接口类型 如何运行test.http测试文件 背景 在最近工作中涉及到使用Django框架开发后端&#xff0c;写完接口后&#xff0c;不可避免需要…

Java项目: 基于SpringBoot+mysql网上点餐系统分前后台(含源码+数据库+答辩PPT+毕业论文)

一、项目简介 本项目是一套基于SpringBootmysql网上点餐系统 包含&#xff1a;项目源码、数据库脚本等&#xff0c;该项目附带全部源码可作为毕设使用。 项目都经过严格调试&#xff0c;eclipse或者idea 确保可以运行&#xff01; 该系统功能完善、界面美观、操作简单、功能齐…

科研绘图系列:R语言差异基因四分图(Quad plot)

文章目录 介绍加载R包导入数据数据预处理画图参考介绍 四分图(Quad plot)是一种数据可视化技术,通常用于展示四个变量之间的关系。它由四个子图组成,每个子图都显示两个变量之间的关系。四分图的布局通常是2x2的网格,每个格子代表一个变量对的散点图。 在四分图中,通常…

2024数学建模国赛A题word版成品论文30页【附带完整解题代码+可视化图表】

0906 0:30 v1.0 问题一、问题二的完整可运行代码&#xff0c;模型建立与求解这一部分的论文。 0906 5:20 v1.1 增加了第三问的完整可运行代码和第二、三问的“模型建立与求解”的论文。&#xff08;即1-3问的代码、模型建立与求解、算法设计、结果分析&#xff09; 1-4问完整可…

大数据-119 - Flink Window总览 窗口机制-滚动时间窗口-基于时间驱动基于事件驱动

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; 目前已经更新到了&#xff1a; Hadoop&#xff08;已更完&#xff09;HDFS&#xff08;已更完&#xff09;MapReduce&#xff08;已更完&am…

java利用JXL操作excel

通过JXL操作Excel JXL是韩国人所著,目前停止更新,只支持xls格式,即2007之前的版本 import java.io.File; import java.io.FileInputStream; import java.io.FileNotFoundException; import java.io.IOException; import java.io.InputStream; import java.net.URL; import java…

[数据集][目标检测]玉米病害检测数据集VOC+YOLO格式6000张4类别

数据集格式&#xff1a;Pascal VOC格式YOLO格式(不包含分割路径的txt文件&#xff0c;仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数)&#xff1a;6000 标注数量(xml文件个数)&#xff1a;6000 标注数量(txt文件个数)&#xff1a;6000 标注…

《Linux运维总结:基于X86_64+ARM64架构CPU使用docker-compose一键离线部署consul 1.18.1容器版分布式ACL集群》

总结&#xff1a;整理不易&#xff0c;如果对你有帮助&#xff0c;可否点赞关注一下&#xff1f; 更多详细内容请参考&#xff1a;《Linux运维篇&#xff1a;Linux系统运维指南》 一、部署背景 由于业务系统的特殊性&#xff0c;我们需要面向不通的客户安装我们的业务系统&…

[数据集][目标检测]街道乱放广告牌检测数据集VOC+YOLO格式114张1类别

数据集格式&#xff1a;Pascal VOC格式YOLO格式(不包含分割路径的txt文件&#xff0c;仅仅包含jpg图片以及对应的VOC格式xml文件和yolo格式txt文件) 图片数量(jpg文件个数)&#xff1a;114 标注数量(xml文件个数)&#xff1a;114 标注数量(txt文件个数)&#xff1a;114 标注类别…

【数据结构】顺序表和链表——顺序表(包含丰富算法题)

文章目录 1. 线性表2. 顺序表2.1 概念与结构2.2 分类2.2.1 静态顺序表2.2.2 动态顺序表 2.3 动态顺序表的实现2.4 顺序表算法题2.4.1 移除元素2.4.2 删除有序数组中的重复项2.4.3 合并两个有序数组 2.5 顺序表问题与思考 1. 线性表 线性表&#xff08;linear list&#xff09;…

数据分析:R语言计算XGBoost线性回归模型的SHAP值

禁止商业或二改转载,仅供自学使用,侵权必究,如需截取部分内容请后台联系作者! 文章目录 介绍SHAP用途计算方法:应用加载R包导入数据数据预处理函数模型介绍 SHAP(SHapley Additive exPlanations)值是一种解释机器学习模型预测的方法。它基于博弈论中的Shapley值概念,…

Vulnhub:hacksudo2

靶机下载地址 信息收集 主机发现 nmap 192.168.31.0/24 -Pn -T4 靶机ip&#xff1a;192.168.31.188 端口扫描 nmap 192.168.31.188 -A -p- -T4 开放端口有80,111,1337(ssh),2049(nfs)。 目录扫描 访问http服务。 点击图片进入游戏。玩了一下没看到什么信息。 目录扫描。…

地理信息科学在考古学中的应用:GIS与遥感技术的时空穿梭之旅

在历史的长河中&#xff0c;每一片土地都承载着文明的记忆。随着科技的进步&#xff0c;地理信息科学&#xff08;GIS&#xff09;与遥感技术正逐渐揭开古老秘密的面纱&#xff0c;让沉睡千年的历史遗迹重新焕发光彩。今天&#xff0c;就让我们踏上一场穿越时空的旅程&#xff…

(一)使用Visual Studio创建ASP.NET Core WebAPI项目

1.创建webAPI项目 选择ASP.NET Core Web API项目模版&#xff08;基于.Core框架可以支持多种系统环境&#xff0c;所以我们选择.Core框架&#xff09;&#xff0c;点下一步。 2.项目名称 项目名称设置为&#xff1a;CoreWebAPI&#xff0c;点下一步 3.选择框架 选择.NET6.0框…

人机融合智能中的计算不可约性

计算的不可约性 是计算理论和复杂性科学中的一个重要概念&#xff0c;主要由 计算机科学家 和 数学家 提出和研究。它指的是在某些系统或过程的模拟中&#xff0c;没有简化或有效的方式来预测其行为&#xff0c;而必须逐步进行每一步的计算来获得结果。 不可约性定义&#xff1…

结构开发笔记(七):solidworks软件(六):装配摄像头、摄像头座以及螺丝,完成摄像头结构示意图

若该文为原创文章&#xff0c;转载请注明原文出处 本文章博客地址&#xff1a;https://hpzwl.blog.csdn.net/article/details/141931518 长沙红胖子Qt&#xff08;长沙创微智科&#xff09;博文大全&#xff1a;开发技术集合&#xff08;包含Qt实用技术、树莓派、三维、OpenCV…

Java-IO:浅谈对NIO的认识

Java-IO&#xff1a;简述常见的IO模型 Java-IO&#xff1a;浅谈对IO的认识 NIO即New IO&#xff0c;这个库是在JDK1.4中才引入的。NIO和IO有相同的作用和目的&#xff0c;但实现方式不同&#xff0c;NIO 主要用到的是块&#xff0c;所以NIO的效率要比IO高很多。在Java API中提供…

LabVIEW如何自学成为专业开发者

自学成为LabVIEW专业开发者需要一个系统化的学习和实践过程&#xff0c;以下是一些关键步骤&#xff1a; 1. 扎实的基础学习 了解LabVIEW的基础概念&#xff1a;首先要熟悉LabVIEW的基本操作、数据流编程理念和图形化编程环境。可以通过LabVIEW的官方教程、Bilibili上的视频课程…