一、前言
最近鸡米花实现了各类的炫酷的图表,有3D柱形图、双边柱形图以及异形柱形图,好了,直接上图:
二、效果图
一个个来吧,下面就是代码啦,注意,一下图表展示的宽高均为800px*300px
三、异形横向柱形图
<template><div class="charts" ref="charts"></div>
</template><script>
import * as echarts from "echarts";
export default {mounted() {let myChart = echarts.init(this.$refs.charts);let richData = {height: 35,width: 60,color: "#fff",align: "center",};let data = [4, 13, 25, 29, 38];var option = {backgroundColor: "#061E42",grid: {left: 40,top: "0%",right: 20,bottom: "0%",containLabel: true,},xAxis: [{show: false,},],yAxis: [{axisTick: "none",axisLine: "none",offset: "15",axisLabel: {textStyle: {color: "#ffffff",fontSize: "16",},},data: ["衢州市", "温州市", "绍兴市", "台州市", "金华市"],},{axisTick: "none",axisLine: "none",axisLabel: {textStyle: {color: "#ffffff",fontSize: "12",fontWeight: "bold",},},data: [" 114 16.12%"," 30 14.25%"," 123 13.15%"," 102 26.12%"," 10 6.12%",].reverse(),},{nameGap: "50",nameTextStyle: {color: "#ffffff",fontSize: "16",},axisLine: {lineStyle: {color: "rgba(0,0,0,0)",},},data: [],},],series: [{name: "条",type: "bar",yAxisIndex: 0,data,barWidth: 12,itemStyle: {normal: {color: new echarts.graphic.LinearGradient(1,0,0,0,[{offset: 0,color: "#76D8FD",},{offset: 1,color: "#025389",},]),},},z: 4,},{name: "背景色",type: "bar",yAxisIndex: 1,barGap: "-100%",data: [99.5, 99.5, 99.5, 99.5, 99.5],barWidth: 12,itemStyle: {color: "#064976",},z: 1,},{name: "背景三角",type: "scatter",hoverAnimation: false,data: [99.5, 99.5, 99.5, 99.5, 99.5],symbol: "triangle",yAxisIndex: 2,symbolSize: 12,symbolRotate: 180,itemStyle: {normal: {color: "#064976",opacity: 1,},},z: 2,},{name: "底部三角",type: "scatter",hoverAnimation: false,data,symbol: "triangle",yAxisIndex: 2,symbolSize: 12,symbolRotate: 180,itemStyle: {normal: {color: "#76D8FD",opacity: 1,},},z: 4,},{name: "底部白色斜杠",type: "scatter",hoverAnimation: false,data,yAxisIndex: 2,symbolSize: [12, 16],symbolKeepAspect: true,symbol: "image://",symbolOffset: [5, 0],itemStyle: {normal: {color: "#76D8FD",opacity: 1,},},z: 4,},{name: "底部深色背影斜杠",type: "scatter",hoverAnimation: false,data,yAxisIndex: 2,symbolSize: [10, 12],symbolKeepAspect: true,symbol: "image://",symbolOffset: [9, 0],itemStyle: {normal: {color: "#76D8FD",opacity: 1,},},z: 3,},{name: "头部三角",type: "scatter",hoverAnimation: false,data: [0, 0, 0, 0, 0],symbol: "triangle",yAxisIndex: 2,symbolSize: 12,itemStyle: {normal: {color: "#025389",opacity: 1,},},z: 4,},// 以下为斜杠代码{name: "头部三角",type: "scatter",hoverAnimation: false,data: [0, 0, 0, 0, 0],symbol: "triangle",yAxisIndex: 2,symbolSize: 20,itemStyle: {normal: {color: "#061E42",opacity: 1,},},symbolOffset: [-2, 0],z: 3,},{name: "头部三角",type: "scatter",hoverAnimation: false,data: [0, 0, 0, 0, 0],symbol: "rect",yAxisIndex: 2,symbolSize: 12,itemStyle: {normal: {color: "#fff",opacity: 1,},},z: 2,symbolOffset: [-7, 0],},{name: "头部三角",type: "scatter",hoverAnimation: false,data: [0, 0, 0, 0, 0],symbol: "triangle",yAxisIndex: 2,symbolSize: 12,symbolRotate: 180,itemStyle: {normal: {color: "#061E42",opacity: 1,},},z: 3,symbolOffset: [-13, 0],},],};myChart.setOption(option);},
};
</script><style scoped>
.charts {width: 100%;height: 100%;
}
</style>
四、双边横向柱形图
<template><div class="charts" ref="charts"></div>
</template><script>
import * as echarts from "echarts";
export default {mounted() {let myChart = echarts.init(this.$refs.charts);var myData = [{value: "100岁以上",textStyle: {fontSize: 12,align: "center",},},{value: "60岁以上",textStyle: {fontSize: 12,align: "center",},},{value: "35~59",textStyle: {fontSize: 12,align: "center",},},{value: "18~34",textStyle: {fontSize: 12,align: "center",},},{value: "7~17",textStyle: {fontSize: 12,align: "center",},},{value: "学龄前",textStyle: {fontSize: 12,align: "center",},},];var databeast = [200, 259, 262, 324, 232, 176];var databeauty = [121, 368, 233, 309, 133, 308];let max = Math.max(...databeast, ...databeauty);max = Math.ceil(max / 100) * 100;var width = 320; //根据盒子宽度 计算两边数值的距离,比如说这里是800的盒子,宽度就是800/2左右var maxList = databeast.map((item) => max);var option = {backgroundColor: "#061E42",grid: [{show: false,left: 50,top: 28,bottom: 15,containLabel: true,width: "35%", //如果挡住中间的文字了,适当将宽度调小,同时上面的width=400也要调整一下},{show: false,left: "51%", //调整中间文字的位置top: 28,bottom: 15,width: "0%",},{show: false,right: 50,top: 28,bottom: 15,containLabel: true,width: "35%",},],xAxis: [{type: "value",inverse: true,max: max,axisLine: {show: true,},axisTick: {show: false,},position: "top",name: "女",nameTextStyle: {color: "rgba(255, 255, 255, 1)",fontWeight: "bold",align: "right",verticalAlign: "bottom",lineHeight: 20,padding: [0, 15],},nameLocation: "start",axisLabel: {show: false,},splitLine: {show: true,lineStyle: {color: "#666",type: "dashed",},},},{gridIndex: 1,show: false,},{gridIndex: 2,max: max,type: "value",name: "男",nameLocation: "start",nameTextStyle: {color: "rgba(255, 255, 255, 1)",fontWeight: "bold",align: "left",verticalAlign: "bottom",lineHeight: 20,padding: [0, 15],},axisLine: {show: true,},axisTick: {show: false,},position: "top",axisLabel: {show: false,},splitLine: {show: true,lineStyle: {color: "#666",type: "dashed",},},},],yAxis: [{type: "category",inverse: true,position: "right",axisLine: {show: false,},axisTick: {show: false,},axisLabel: {show: false,margin: 8,textStyle: {color: "#fff",fontSize: 12,},},data: myData,},{gridIndex: 1,type: "category",inverse: true,position: "left",axisLine: {show: false,},axisTick: {show: false,},axisLabel: {show: true,textStyle: {color: "#fff",fontSize: 12,},},data: myData,},{gridIndex: 2,type: "category",inverse: true,position: "left",axisLine: {show: false,},axisTick: {show: false,},axisLabel: {show: false,textStyle: {color: "#9D9EA0",fontSize: 12,},},data: myData,},],series: [{name: "帅哥",type: "bar",barWidth: 14,label: {show: true,offset: [-width, 0],position: "right",fontWeight: "bold",color: "#fff",},itemStyle: {show: true,color: "#FC8404",label: {show: true,position: [-40, 5],formatter: function (v) {return v.value * -1;},},},data: databeast,},{name: "背景",type: "bar",barWidth: 18,barGap: "-100%",data: maxList,itemStyle: {color: "#393237",shadowColor: "#393237",shadowOffsetX: 0,shadowOffsetY: -3,},z: 1,emphasis: {disabled: true,},},{name: "女性三角",type: "scatter",hoverAnimation: false,data: databeast,symbol: "triangle",symbolSize: [14, 10],symbolRotate: 90,symbolOffset: [-7, -2],itemStyle: {color: "#FC8404",opacity: 1,},z: 3,emphasis: {disabled: true,},},{name: "男性三角",type: "scatter",hoverAnimation: false,data: databeauty,symbol: "triangle",xAxisIndex: 2,yAxisIndex: 2,symbolSize: 12,symbolSize: [14, 10],symbolOffset: [7, -2],symbolRotate: 270,clip: false,itemStyle: {color: "#01DDF7",opacity: 1,},z: 3,emphasis: {disabled: true,},},{name: "美女",type: "bar",barWidth: 14,xAxisIndex: 2,yAxisIndex: 2,label: {show: true,offset: [width, 0],position: "left",fontWeight: "bold",color: "#fff",},itemStyle: {show: true,color: "#01DDF7",},data: databeauty,},{name: "背景",type: "bar",barWidth: 18,barGap: "-100%",data: maxList,xAxisIndex: 2,yAxisIndex: 2,itemStyle: {color: "#064668",shadowColor: "#064668",shadowOffsetX: 0,shadowOffsetY: -3,},z: 1,emphasis: {disabled: true,},},],};myChart.setOption(option);},
};
</script><style scoped>
.charts {width: 100%;height: 100%;
}
</style>
五、3D横向柱形图
<template><div style="width: 100%; height: 100%" ref="chartDom"></div>
</template><script>
import * as echarts from "echarts";
export default {mounted() {this.initChart();},methods: {initChart() {let myChart = echarts.init(this.$refs.chartDom);let width = 12; //柱形图的单面的宽度,这里单面宽度为12,则柱形图实际宽度为24let diamondAngl = 9; //0为0度 数值越大角度越大const CubeLeft = echarts.graphic.extendShape({shape: {x: 0,y: 0,},buildPath: function (ctx, shape) {const xAxisPoint = shape.xAxisPoint;const c0 = [shape.x - diamondAngl, shape.y];const c1 = [shape.x, shape.y - width];const c2 = [xAxisPoint[0] + 5, xAxisPoint[1] - width];const c3 = [xAxisPoint[0] + 1, xAxisPoint[1]];ctx.moveTo(c0[0], c0[1]).lineTo(c1[0], c1[1]).lineTo(c2[0], c2[1]).lineTo(c3[0], c3[1]).closePath();},});const CubeRight = echarts.graphic.extendShape({shape: {x: 0,y: 0,},buildPath: function (ctx, shape) {const xAxisPoint = shape.xAxisPoint;const c1 = [shape.x, shape.y + width];const c2 = [xAxisPoint[0] + 5, xAxisPoint[1] + width];const c3 = [xAxisPoint[0] + 1, xAxisPoint[1] + 0.05];const c4 = [shape.x - diamondAngl, shape.y + 0.05];ctx.moveTo(c1[0], c1[1]).lineTo(c2[0], c2[1]).lineTo(c3[0], c3[1]).lineTo(c4[0], c4[1]).closePath();},});const CubeTop = echarts.graphic.extendShape({shape: {x: 0,y: 0,},buildPath: function (ctx, shape) {const c1 = [shape.x - diamondAngl, shape.y];const c2 = [shape.x, shape.y + width];const c3 = [shape.x + diamondAngl, shape.y - 0.05];const c4 = [shape.x, shape.y - width + 0.05];ctx.moveTo(c1[0], c1[1]).lineTo(c2[0], c2[1]).lineTo(c3[0], c3[1]).lineTo(c4[0], c4[1]).closePath();},});echarts.graphic.registerShape("CubeLeft", CubeLeft);echarts.graphic.registerShape("CubeRight", CubeRight);echarts.graphic.registerShape("CubeTop", CubeTop);const VALUE = [13, 25, 18, 19, 34, 24];let fill = new echarts.graphic.LinearGradient(1, 0, 0, 0, [{offset: 0,color: "#37C5F6",},{offset: 0.9,color: "#0B1B3E",},{offset: 1,color: "rgba(6,23,53,0.2)",},]);var option = {backgroundColor: "#010d3a",grid: {left: 10,right: 30,bottom: 5,top: 5,containLabel: true,},xAxis: {type: "value",axisLine: {show: false,},axisTick: {show: false,},axisLabel: {show: false,},splitLine: {show: false,},},yAxis: {type: "category",data: ["测试1","测试2","测试3","测试4","测试5","测试6",],axisLine: {show: true,lineStyle: {color: "#113B5E",},},splitLine: {show: false,},axisTick: {show: false,},axisLabel: {fontSize: 12,color: "#C3EAFF",},splitLine: {show: false,},},series: [{type: "custom",renderItem: (params, api) => {const location = api.coord([api.value(0),api.value(1),]);return {type: "group",children: [{type: "CubeLeft",shape: {api,xValue: api.value(0),yValue: api.value(1),x: location[0],y: location[1],xAxisPoint: api.coord([0,api.value(1),]),},style: {fill: fill,},},{type: "CubeRight",shape: {api,xValue: api.value(0),yValue: api.value(1),x: location[0],y: location[1],xAxisPoint: api.coord([0,api.value(1),]),},style: {fill: fill,},},{type: "CubeTop",shape: {api,xValue: api.value(0),yValue: api.value(1),x: location[0],y: location[1],xAxisPoint: api.coord([api.value(0),api.value(0),]),},style: {fill: new echarts.graphic.LinearGradient(1,0,0,0,[{offset: 0,color: "#fff",},{offset: 1,color: "#4CD2FF",},]),},},],};},data: VALUE,},{type: "bar",label: {show: true,position: "right",fontSize: 12,color: "#4DA6FF",offset: [10, 1],},itemStyle: {color: "transparent",},data: VALUE,},],};option && myChart.setOption(option);},},
};
</script>
六、3D垂直柱形图
<template><div style="width: 100%; height: 100%" ref="chartDom"></div>
</template><script>
import * as echarts from "echarts";
export default {mounted() {this.initChart();},methods: {initChart() {let myChart = echarts.init(this.$refs.chartDom);const CubeLeft = echarts.graphic.extendShape({shape: {x: 0,y: 0,},buildPath: function (ctx, shape) {const xAxisPoint = shape.xAxisPoint;const c0 = [shape.x - 9, shape.y - 3];const c1 = [shape.x + 9, shape.y - 3];const c2 = [xAxisPoint[0] + 9, xAxisPoint[1]];const c3 = [xAxisPoint[0] - 9, xAxisPoint[1]];ctx.moveTo(c0[0], c0[1]).lineTo(c1[0], c1[1]).lineTo(c2[0], c2[1]).lineTo(c3[0], c3[1]).closePath();},});const CubeRight = echarts.graphic.extendShape({shape: {x: 0,y: 0,},buildPath: function (ctx, shape) {const xAxisPoint = shape.xAxisPoint;const c1 = [shape.x + 9, shape.y - 3];const c2 = [xAxisPoint[0] + 9, xAxisPoint[1]];const c3 = [xAxisPoint[0] + 18, xAxisPoint[1] - 6];const c4 = [shape.x + 18, shape.y - 9];ctx.moveTo(c1[0], c1[1]).lineTo(c2[0], c2[1]).lineTo(c3[0], c3[1]).lineTo(c4[0], c4[1]).closePath();},});const CubeTop = echarts.graphic.extendShape({shape: {x: 0,y: 0,},buildPath: function (ctx, shape) {const c1 = [shape.x - 9, shape.y - 3];const c2 = [shape.x + 9, shape.y - 3];const c3 = [shape.x + 18, shape.y - 9];const c4 = [shape.x, shape.y - 9];ctx.moveTo(c1[0], c1[1]).lineTo(c2[0], c2[1]).lineTo(c3[0], c3[1]).lineTo(c4[0], c4[1]).closePath();},});echarts.graphic.registerShape("CubeLeft", CubeLeft);echarts.graphic.registerShape("CubeRight", CubeRight);echarts.graphic.registerShape("CubeTop", CubeTop);const VALUE = [2012, 1230, 3790, 2349, 1654, 1230];let fill = new echarts.graphic.LinearGradient(0, 0, 0, 1, [{offset: 0,color: "#367EEF",},{offset: 0.5,color: "#12A8C1",},{offset: 1,color: "rgba(6,23,53,0.2)",},]);var option = {backgroundColor: "#010d3a",grid: {left: 20,right: 20,bottom: 10,top: 20,containLabel: true,},xAxis: {type: "category",data: ["2019", "2020", "2021", "2022", "2023", "2024"],axisLine: {show: true,lineStyle: {color: "#4E7AA0",},},offset: 0,axisTick: {show: false,},axisLabel: {fontSize: 10,color: "#92A0BD",},},yAxis: {type: "value",axisLine: {show: true,lineStyle: {color: "#4E7AA0",},},splitLine: {show: false,},axisTick: {show: false,},axisLabel: {fontSize: 10,color: "#92A0BD",},boundaryGap: ["20%", "20%"],},series: [{type: "custom",renderItem: (params, api) => {const location = api.coord([api.value(0),api.value(1),]);return {type: "group",children: [{type: "CubeLeft",shape: {api,xValue: api.value(0),yValue: api.value(1),x: location[0],y: location[1],xAxisPoint: api.coord([api.value(0),0,]),},style: {fill: fill,},},{type: "CubeRight",shape: {api,xValue: api.value(0),yValue: api.value(1),x: location[0],y: location[1],xAxisPoint: api.coord([api.value(0),0,]),},style: {fill: fill,},},{type: "CubeTop",shape: {api,xValue: api.value(0),yValue: api.value(1),x: location[0],y: location[1],xAxisPoint: api.coord([api.value(0),0,]),},style: {fill: "#A8DBE5",},},],};},data: VALUE,},{type: "bar",label: {normal: {show: true,position: "top",fontSize: 10,color: "#3679BF",offset: [4, -25],},},itemStyle: {color: "transparent",},data: VALUE,},],};option && myChart.setOption(option);},},
};
</script>
七、象形柱形图
<template><div class="charts" ref="charts"></div>
</template><script>
import * as echarts from "echarts";
export default {mounted() {let myChart = echarts.init(this.$refs.charts);var option = {backgroundColor: "#061E42",grid: {left: "50",top: "20",right: "10",bottom: "30",},tooltip: {position: "top",},xAxis: {type: "category",data: ["1月", "2月", "3月", "4月", "5月", "6月"],axisLabel: {show: true,color: "#5A7FB3",fontSize: 12,},axisTick: {show: false,},axisLine: {show: true,lineStyle: {color: "#5A7FB3",},},splitLine: {show: false,},},yAxis: {type: "value",axisLabel: {show: true,color: "#5A7FB3",fontSize: 12,},axisTick: {show: false,},axisLine: {show: true,lineStyle: {color: "#5A7FB3",},},splitLine: {show: false,},},series: [{name: "1月",data: [0, 0, 0, 0, 0, 0, 0],stack: "a",type: "bar",},{name: "1月",data: [0, 0, 0, 0, 0, 0, 0],stack: "a",type: "bar",},{name: "2月",data: [0, 0, 0, 0, 0, 0, 0],stack: "a",type: "bar",},{name: "3月",data: [0, 0, 0, 0, 0, 0, 0],stack: "a",type: "bar",},{name: "4月",data: [0, 0, 0, 0, 0, 0, 0],stack: "a",type: "bar",},{name: "5月",data: [0, 0, 0, 0, 0, 0, 0],stack: "a",type: "bar",},{name: "6月",data: [0, 0, 0, 0, 0, 0, 0],stack: "a",type: "bar",},{type: "pictorialBar",label: {show: true,position: "top",color: "#A6CCFF",fontSize: 10,},itemStyle: {color: {type: "linear",x: 0,y: 0,x2: 0,y2: 1,colorStops: [{offset: 0,color: "#23EA5A",},{offset: 1,color: "rgba(59,113,215,0.2)",},],global: false,},},data: [2000, 3209, 4328, 3409, 5677, 3562],stack: "a",barCategoryGap: "-100%",symbol: "path://M0,10 L10,10 C5.5,10 5.5,5 5,0 C4.5,5 4.5,10 0,10 z",},],};myChart.setOption(option);},
};
</script><style scoped>
.charts {background-color: #fff;width: 100%;height: 100%;
}
</style>
好啦,以上就是鸡米花分享的所有内容了,如果觉得写的还不错的话,记得给我一个三连哦!