基于深度学习 卷积神经网络resnext50的中医舌苔分类系统

 

项目概述

本项目旨在通过深度学习技术,特别是利用卷积神经网络(Convolutional Neural Networks, CNNs)中的ResNeXt50架构,实现对中医舌象图像的自动分类。该系统不仅能够识别不同的舌苔类型,还能够在PyQt5框架下提供一个直观的图形用户界面(GUI),使得医生或患者能够方便地上传舌象照片并获取分析结果。

技术栈

  • 深度学习框架:采用PyTorch或其他支持ResNeXt50的框架来构建模型。
  • 模型选择:使用ResNeXt50作为主干网络,这是一种改进版的残差网络(ResNet),具有更强大的特征提取能力和更高的准确率。
  • 图形用户界面:使用PyQt5来开发应用程序的前端,提供一个易于使用的交互界面。
  • 后端逻辑:通过Python实现图像预处理、模型加载、预测等功能。

主要功能

  • 图像输入:用户可以通过界面上传舌象照片。
  • 实时预测:上传后,系统会自动进行图像预处理,并使用训练好的ResNeXt50模型进行分类预测。
  • 可视化结果:展示预测过程中的损失曲线、混淆矩阵以及准确率(Accuracy)、精确度(Precision)等评价指标。
  • 分类解释:除了给出最终的分类结果外,系统还会根据预设的知识库提供相应的症状描述和可能的诊断建议。

训练过程

  • 数据准备:收集大量的中医舌象图片,并根据舌苔的颜色、厚度等特征进行标签标注。
  • 模型训练:使用标注好的数据集训练ResNeXt50模型,优化参数以提高分类性能。
  • 评估指标:在验证集上评估模型的表现,调整超参数,直到达到满意的性能。

应用场景

  • 医疗辅助:为中医诊所提供一种辅助诊断工具,帮助医生快速判断患者的舌象情况。
  • 健康咨询:普通用户也可以利用此工具进行自我检查,了解自己的健康状况。

未来展望

  • 多模态融合:考虑将舌象识别与其他生物特征识别技术相结合,以提供更加全面的健康评估。
  • 移动端应用:开发移动应用程序版本,使得更多人能够随时随地使用这一服务。

项目目录结构

1project_root/
2├── src/
3│   ├── main.py
4│   ├── gui.py
5│   ├── model.py
6│   ├── utils.py
7├── data/
8│   ├── train/
9│   ├── test/
10├── checkpoints/
11├── requirements.txt
12└── README.md

主程序 main.py

这是程序的入口点,负责初始化GUI并启动事件循环。

1from PyQt5.QtWidgets import QApplication
2from gui import MainWindow
3
4if __name__ == "__main__":
5    app = QApplication([])
6    window = MainWindow()
7    window.show()
8    app.exec_()

图形用户界面 gui.py

使用PyQt5创建的应用程序窗口。

1from PyQt5.QtWidgets import QMainWindow, QPushButton, QLabel, QVBoxLayout, QWidget, QFileDialog
2from PyQt5.QtGui import QPixmap
3from model import load_model, predict_image
4import os
5
6class MainWindow(QMainWindow):
7    def __init__(self):
8        super().__init__()
9        self.setWindowTitle("中医舌苔分类系统")
10        self.setGeometry(100, 100, 600, 400)
11        
12        # 初始化UI组件
13        self.image_label = QLabel(self)
14        self.load_button = QPushButton('选择图片', self)
15        self.result_label = QLabel(self)
16        
17        layout = QVBoxLayout()
18        layout.addWidget(self.image_label)
19        layout.addWidget(self.load_button)
20        layout.addWidget(self.result_label)
21        
22        container = QWidget()
23        container.setLayout(layout)
24        self.setCentralWidget(container)
25        
26        # 按钮点击事件
27        self.load_button.clicked.connect(self.load_image)
28    
29    def load_image(self):
30        options = QFileDialog.Options()
31        file_name, _ = QFileDialog.getOpenFileName(self,"QFileDialog.getOpenFileName()", "","Images (*.png *.jpg)", options=options)
32        if file_name:
33            pixmap = QPixmap(file_name)
34            self.image_label.setPixmap(pixmap)
35            result = predict_image(file_name)
36            self.result_label.setText(f"预测结果: {result}")

模型定义 model.py

这里包含了模型加载和图像预测的逻辑。

1import torch
2import torchvision.transforms as transforms
3from PIL import Image
4import os
5
6def load_model():
7    # 加载预训练的ResNeXt50模型
8    model = torch.hub.load('pytorch/vision:v0.9.0', 'resnext50_32x4d', pretrained=True)
9    # 修改最后一层以适应分类任务
10    num_ftrs = model.fc.in_features
11    model.fc = torch.nn.Linear(num_ftrs, num_classes)  # num_classes 是类别数
12    model.load_state_dict(torch.load(os.path.join('checkpoints', 'best_model.pth'), map_location=torch.device('cpu')))
13    return model
14
15def predict_image(image_path):
16    # 加载模型
17    model = load_model()
18    model.eval()
19    
20    # 定义图像预处理步骤
21    preprocess = transforms.Compose([
22        transforms.Resize(256),
23        transforms.CenterCrop(224),
24        transforms.ToTensor(),
25        transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
26    ])
27    
28    # 加载并预处理图像
29    image = Image.open(image_path)
30    input_tensor = preprocess(image)
31    input_batch = input_tensor.unsqueeze(0)
32    
33    # 预测
34    with torch.no_grad():
35        output = model(input_batch)
36    _, predicted_idx = torch.max(output, 1)
37    
38    # 返回预测类别
39    return predicted_idx.item()

工具函数 utils.py

这里可以包含一些辅助函数,比如读取数据集、保存模型等。

1import torch
2import os
3
4def save_checkpoint(model, path):
5    torch.save(model.state_dict(), path)
6
7def load_data(data_dir):
8    # 加载数据集的代码
9    pass

这个示例仅提供了一个基础框架,你需要根据实际情况填充更多的细节,比如添加更多的功能、处理异常情况、优化用户体验等。此外,还需要确保所有依赖项都已安装,并正确配置路径。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/418899.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

简单实用的php全新实物商城系统

免费开源电商系统,提供灵活的扩展特性、高度自动化与智能化、创新的管理模式和强大的自定义模块,让电商用户零成本拥有安全、高效、专业的移动商城。 代码是全新实物商城系统源码版。 代码下载

ngrok | 内网穿透,支持 HTTPS、国内访问、静态域名

前言 当我们需要把本地开发的应用展示给外部用户时,常常会因为无法直接访问而陷入困境。 就为了展示一下,买服务、域名,搭环境,费钱又费事。 那有没有办法,让客户直接访问自己本机开发的应用呢? 这种需…

Vue 使用接口返回的背景图片和拼图图片进行滑动拼图验证

一、背景 前两天发了一篇 vue-monoplasty-slide-verify 滑动验证码插件使用及踩坑_vue-monoplasty-slide-verify 引用后不显示-CSDN博客 这两天项目又需要通过接口校验,接口返回了背景图片和拼图图片,于是在网上找了一篇帖子,vue 图片滑动…

安卓玩机工具------小米工具箱扩展工具 小米机型功能拓展

小米工具箱扩展版 小米工具箱扩展版 iO_Box_Mi_Ext是由晨钟酱开发的一款适用于小米(MIUI)、多亲(2、2Pro)、多看(多看电纸书)的多功能工具箱。该工具所有功能均可以免root实现,使用前&…

2024/9/6黑马头条跟学笔记(三)

D3 内容介绍 jdk8新特性,stream流,lambda表达式 ​ 自媒体前后端搭建 步骤 sql—— 实体—— 微服务拷贝,配置nacos—— spring:datasource:driver-class-name: com.mysql.jdbc.Driverurl: jdbc:mysql://192.168.233.136:3306/leadnews_…

基于Spring Boot的火车订票管理系统

你好呀,我是计算机学姐码农小野!如果有相关需求,可以私信联系我。 开发语言:Java 数据库:MySQL 技术:JAVA语言 Spring Boot框架 工具:IDEA/Eclipse、Navicat、Tomcat 系统展示 首页 管理…

Android Jetpact Lifecycle 解析

认识 Lifecycle Lifecycle 是什么 Lifecycle 是 Jetpack 组件库中的一个生命周期感知型组件。在 Lifecycle 出现之前,需要手动从外部宿主(如 Activity、Fragment 或自定义宿主)中将生命周期事件分发到功能组件内部,这势必会造成…

SAM 2:分割图像和视频中的任何内容

文章目录 摘要1 引言2 相关工作3 任务:可提示视觉分割4 模型5 数据5.1 数据引擎5.2 SA-V数据集 6 零样本实验6.1 视频任务6.1.1 提示视频分割6.1.2 半监督视频对象分割6.1.3 公平性评估 6.2 图像任务 7 与半监督VOS的最新技术的比较8 数据和模型消融8.1 数据消融8.2…

RT-Thread(Nano版本)的快速移植(基于NUCLEO-F446RE)

目录 概述 1 RT-Thread 1.1 RT-Thread的版本 1.2 认识Nano版本 2 STM32F446U上移植RT-Thread 2.1 STM32Cube创建工程 2.2 移植RT-Thread 2.2.1 安装RT-Thread Packet 2.2.2 加载RT-Thread 2.2.3 匹配相关接口 2.2.3.1 初次编译代码 2.2.3.2 匹配端口 2.2.4 移植FinSH…

时间同步服务

多主机协作工作时,各个主机的时间同步很重要,时间不一致会造成很多重要应用的故障,如:加密协 议,日志,集群等。 利用NTP(Network Time Protocol) 协议使网络中的各个计算机时间达到…

OceanBase 4.x 存储引擎解析:如何让历史库场景成本降低50%+

据国际数据公司(IDC)的报告显示,预计到2025年,全球范围内每天将产生高达180ZB的庞大数据量,这一趋势预示着企业将面临着更加严峻的海量数据处理挑战。随着数据日渐庞大,一些存储系统会出现诸如存储空间扩展…

AF透明模式/虚拟网线模式组网部署

透明模式组网 实验拓扑 防火墙基本配置 接口配置 eth1 eth3 放通策略 1. 内网用户上班时间(9:00-17:00)不允许看视频、玩游戏及网上购物,其余时 间访问互联网不受限制;(20 分) 应用控制策略 2. 互联…

IBM Storwize V7000存储控制器故障节点报错574

背景:由于客户机房搬迁,需要下电迁移设备。该存储自2016年投入生产使用后,从未关过机,已正常运行七八年时间,期间只更换过硬盘,无其他硬件故障。 在GUI界面点击关闭系统后,大概等了40分钟&…

说一下解除docker限制内存警告

有时候docker要对容器使用的内存做出限制,通常的做法是使用参数 -m 例如: docker run -m 512M表示容器内存最大不能超过512M。 但这样做,在ubuntu会看到以下警告 WARNING: Your kernel does not support swap limit capabilitiesdocker官方…

从监控到智能:EasyCVR视频汇聚平台助力加油站安全监管升级转型

随着科技的不断进步,视频监控技术在各个行业的应用日益广泛,尤其在加油站这一关键领域,视频智能监管系统的应用显得尤为重要。TSINGSEE青犀视频EasyCVR视频汇聚平台作为一款基于“云-边-端”一体化架构的视频融合与AI智能分析平台&#xff0c…

JAVA读写Excel(jxl,poi,easyExcel)

目录 一、需求描述 二、具体操作Excel的常用方法 方法一: 使用jxl 方法二: POI 方法三:EasyExcel 三、总结 一、需求描述 前端有时候会传送 Excel 文件给后端(Java)去解析,那我们作为后端该如何实现…

Jenkins+Svn+Vue自动化构建部署前端项目(保姆级图文教程)

目录 介绍 准备工作 配置jenkins 构建部署任务 常见问题 介绍 在平常开发前端vue项目时,我们通常需要将vue项目进行打包构建,将打包好的dist目录下的静态文件上传到服务器上,但是这种繁琐的操作是比较浪费时间的,可以使用jenkins进行自动化构建部署前端vue 准备工作 准备…

AI模型的未来之路:全能与专精的博弈与共生

人工智能(AI)领域正迅速发展,伴随着技术的不断进步,AI模型的应用范围也在不断扩展。当前,AI模型的设计和使用面临两个主要趋势:全能型模型和专精型模型。这两者之间的博弈与共生将塑造未来的AI技术格局。本文将从以下七个方面探讨AI模型的未来之路,并提供实用的代码示例…

ROS1 + Realsense d455 固件安装+读取rostopic数据

目录 安装固件(一定要匹配)ROS1 wrapper 安装方法Realsense SDK 安装方法Realsense Firmware 安装方法 修改roslaunch配置文件,打开双目图像和IMU数据其他坑点参考链接 安装固件(一定要匹配) 如果你是使用ROS1获取rea…

Python数据分析-绘制图表

示例1: from pyecharts.charts import Bar # 柱状图 from pyecharts import options as optsfrom pyecharts.render import make_snapshotbar Bar() bar.add_xaxis([一月, 二月, 三月, 四月, 五月]) bar.add_yaxis("销售额", [10, 20, 15, 25, 30])# 配…