大模型时代的企业转型:RAG技术的进化与挑战

从2023年起开始火爆的大语言模型(Large Language Model,LLM),如GPT/Gemini/通义千问/GLM/文心一言/豆包等,经过了一年多的比拼和进化,已经几乎涵盖了所有通用性、常识性的知识和理解力;

与之同时,更多传统行业的企业也被吸引到大语言模型的生态中,探索新AI技术为企业带来实质性的变革。与大模型厂商对通用能力的比拼不同,传统企业更关注大模型通用能力与自身行业或企业内部的垂直领域的知识相结合,以满足企业特有业务场景的述求。

垂直领域融合

大语言模型对企业垂直领域知识进行融合,主流是两个方向:

Fine-Tuning

将私域知识标注为训练数据,直接对大模型进行增量训练,提升大模型自身的知识储备和认知能力,这也是大模型厂商持续提升模型能力的方式之一。

RAG(Retrieval Augmented Generation)

通过在大模型外部构建一套检索体系,解决企业私域知识的提炼和召回问题,并通过prompt让大模型在企业私域知识的背景下返回结果。

与Fine-Tuning不同,RAG降低了企业对大模型应用的技术门槛,从去年开始一直是受广大非AI专业企业的热衷。本文从多个RAG实践项目提炼经验,探索如何更好的借助RAG框架为企业进行赋能。

RAG的机会与痛点

RAG框架的优势在于构建了 Query 和 Generate 的分工机制,在不要求改变大语言模型Generate能力的基础上,实现与企业私域知识的融合。

如果没有 Query环节,尽管当下大语言模型的输入宽度最高已经突破百万tokens,但是也难以一次性覆盖企业全部私域知识量;而且如果用户每次问询都伴随巨量tokens的提示词,也是一种性价比极低的方法。所以在当前算力背景下,RAG在大模型应用场景中依然有举足轻重的地位。

基础的RAG框架图:

然而,企业在实践大模型+RAG框架时,有时候会发现某些情况并不尽人意,尽管大模型的推理和生成能力已经日渐成熟,但是受限于RAG框架下文本片段+向量召回机制下的Query准确率问题,往往制约了大模型本身能力的发挥。如何更好的协同RAG框架下QueryGenerate的能力,一直是大模型应用的探索方向之一。

RAG的优化实践

为了解决RAG面临的痛点,我们可以把RAG的Query体系归纳为三大环节:知识预处理、用户提问和查询召回。在每个环节下,一步步探索帮助改善Query问题的具体实践:

Part1:知识预处理

RAG从企业各种类型的文件中提取知识内容,这些内容被切割为知识块,作为检索的最小单元。知识块内容质量的好坏,直接影响到后续检索和生成回复的准确率。

这个环节我们可以从两个方面进行改善:

1 文档规范

企业可以从文档编写和积累源头,对内容加以规范,从而使其被RAG更准确的提取和切割。我们提供几种格式的规范参考:

文本: 采用多级标题的段落结构,每个末级标题下的内容不易过长(受切片宽度影响),每个段落内容必须是完整清晰的。

表格: 单行表头的表格最佳,行数据避免使用合并单元格的情况。

图片: 图片与文字的顺序要清晰,一般word/pdf适合文字上、图片下的布局,ppt可以适合文字上、图片下或文字左、图片右的布局。

PDF: PDF通常是用OCR进行文字提取的,对单换行符不敏感,所以对正文的段落划分,建议采用双换行符的方式,便于识别段落。

Word内容示例

PPT内容示例

2 内容加工

对于更新频率低的文档,我们可以利用大模型Generate能力对文档内容进行智能化加工,具体实践的方案:

智能摘要: 对整篇文档的内容进行摘要提取,摘要可以用于单独匹配用户的问题。

问题预测: 对整篇文档或文档片段进行预测问题,生成多个相关的问题短语句,问题短语句可以用于单独匹配用户的问题。

图片加工: 仅依靠图片上下文关系或ORC技术对图片进行内容推理的方式并不可靠;可以借助大模型对图片的理解能力,将文档内的图片归纳为文本描述,从而以文本的形式与用户问题匹配

知识图谱: 在大模型的帮助下,可以更加智能的提取文档中的重要实体,并构建三元组形式(实体1 - 关系 - 实体2),搭建多文档的知识图谱。

Part2:用户提问

用户提问的内容和方法,也是影响RAG准确率的重要因素,对此,我们_可以增加更多显性和隐性的互动环节来改善:_

问题澄清

受到传统文本召回的搜索引擎影响,很多用户习惯于用一个词汇或短语进行提问,这种行为会带来更多的匹配不确定性。借助大模型可以快速构建多种澄清场景,并对用户问题进行判断和追问后,归纳成高质量的完整问题进行信息检索。

问题衍生

大模型的Generate能力可以将用户的问题进行相关性衍生,这个环节对用户是隐性的。衍生的相关问题可以分别用于检索更多的知识片段,然后排序合并到大模型的prompt里,确保生成回复的全面性。

问题分类器

企业内部往往会同时存在多个领域的知识,这些知识在一起被检索时,往往可能会出现干扰,通过构建一个问题分类器,可以定义不同的分类指向不同的知识库。用户在提问时可以率先明确问题分类,也可以借助大模型能力对问题进行自动分类,结合分类路由实现避免不同领域相似知识的干扰。

Part3:查询召回

该环节是将用户需求与知识储备进行匹配的桥梁,也是RAG框架里重要的一环,回归到Query的本质。自人类进入信息化社会以来,信息的查询和召回一直是一个持续的话题,我们也_可以引入优秀的策略和先进的技术来提升召回准确率:_

向量模型召回

作为RAG框架的首选,也是查询召回的基础能力,面对长文本的向量匹配,我们可以选择更高维度的向量模型来捕获和比较更多特征值,提升准确率。

目前部分向量模型:

模型

维度

Bert向量模型

768

BGE向量模型

1024

GPT向量模型

1536~3072

文本向量组合召回

文本召回和向量召回是两种常见的应对海量数据的检索技术,各自具有独特的优缺点。为了提升检索效果,可以将这两者进行有效融合。

例如,可以先进行基于关键词的文本召回,然后在此基础上实施向量召回;或者同时进行文本匹配和向量匹配,最后通过综合评分模型进行结果排序和召回。这样的融合策略有助于提高检索的准确性和效率。

重排模型召回

重排模型是一种在低算力、低成本的向量模型与高准确率、高成本的大语言模型之间的折中方案。它结合了向量模型的高效性和大语言模型的语义理解能力,旨在提供更优的检索效果,同时降低计算资源的需求。

重排模型如:商业闭源的Cohere Rerank模型和开源bge-reranker-large模型等都是当下比较热门的重排模型。

知识图谱召回

结合对文档预处理的知识图谱构建,我们在查询召回环节可以引用图谱的能力,通过对问题的实体识别,进行关系推理和图谱查询;也可以与文本召回和向量召回相结合,形成一个混合召回策略,提升整体的搜索效果。

通过企业内部制度的规范、大模型Generate能力的融入、以及衍生技术工具的升级,使得RAG不单单是一个大模型的外挂系统,而是一个具有流程化的,将企业私域知识和大模型通用能力深度融合的企业实践。在未来,随着科技的不断进步和用户习惯的不断重塑,RAG技术也将会为企业带来新的机遇和挑战。

在如今的AI时代,我们已经全面步入了大模型时代。飞速发展的大模型及其衍生技术,正在不断推动各行各业的创新与变革。包括RAG在内的这些技术不仅提升了数据处理和决策的效率,更为未来的应用场景开辟了无限可能。从智能助手到自动化决策,从个性化推荐到深度语义理解,未来的AI将更加智能、灵活和人性化。展望未来,我们有理由相信,随着技术的不断进步,AI将更深入地融入我们的生活,改变我们的工作方式,提升我们的生活质量。

读者福利:如果大家对大模型感兴趣,这套大模型学习资料一定对你有用

对于0基础小白入门:

如果你是零基础小白,想快速入门大模型是可以考虑的。

一方面是学习时间相对较短,学习内容更全面更集中。
二方面是可以根据这些资料规划好学习计划和方向。

包括:大模型学习线路汇总、学习阶段,大模型实战案例,大模型学习视频,人工智能、机器学习、大模型书籍PDF。带你从零基础系统性的学好大模型!

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
在这里插入图片描述

👉AI大模型学习路线汇总👈

大模型学习路线图,整体分为7个大的阶段:(全套教程文末领取哈)

第一阶段: 从大模型系统设计入手,讲解大模型的主要方法;

第二阶段: 在通过大模型提示词工程从Prompts角度入手更好发挥模型的作用;

第三阶段: 大模型平台应用开发借助阿里云PAI平台构建电商领域虚拟试衣系统;

第四阶段: 大模型知识库应用开发以LangChain框架为例,构建物流行业咨询智能问答系统;

第五阶段: 大模型微调开发借助以大健康、新零售、新媒体领域构建适合当前领域大模型;

第六阶段: 以SD多模态大模型为主,搭建了文生图小程序案例;

第七阶段: 以大模型平台应用与开发为主,通过星火大模型,文心大模型等成熟大模型构建大模型行业应用。

👉大模型实战案例👈

光学理论是没用的,要学会跟着一起做,要动手实操,才能将自己的所学运用到实际当中去,这时候可以搞点实战案例来学习。

在这里插入图片描述

👉大模型视频和PDF合集👈

观看零基础学习书籍和视频,看书籍和视频学习是最快捷也是最有效果的方式,跟着视频中老师的思路,从基础到深入,还是很容易入门的。
在这里插入图片描述
在这里插入图片描述

👉学会后的收获:👈

• 基于大模型全栈工程实现(前端、后端、产品经理、设计、数据分析等),通过这门课可获得不同能力;

• 能够利用大模型解决相关实际项目需求: 大数据时代,越来越多的企业和机构需要处理海量数据,利用大模型技术可以更好地处理这些数据,提高数据分析和决策的准确性。因此,掌握大模型应用开发技能,可以让程序员更好地应对实际项目需求;

• 基于大模型和企业数据AI应用开发,实现大模型理论、掌握GPU算力、硬件、LangChain开发框架和项目实战技能, 学会Fine-tuning垂直训练大模型(数据准备、数据蒸馏、大模型部署)一站式掌握;

• 能够完成时下热门大模型垂直领域模型训练能力,提高程序员的编码能力: 大模型应用开发需要掌握机器学习算法、深度学习框架等技术,这些技术的掌握可以提高程序员的编码能力和分析能力,让程序员更加熟练地编写高质量的代码。

👉获取方式:

😝有需要的小伙伴,可以保存图片到wx扫描二v码免费领取【保证100%免费】🆓
在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/423478.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

基于Java+Mysql实现(web)大型企业管理系统

技术报告 第一章 系统概述 包括用户管理、权限管理、软件项目管理、软件模块管理、测试用例管理、测试任务分配、bug管理等功能。实现公司不同部门间团队协作,管理人员也能够更加有效的把控系统开发的进度。 本实验综合应用JavaWeb编程中的Servlet,JS…

iPhone 16分辨率,屏幕尺寸,PPI 详细数据对比 iPhone 16 Plus、iPhone 16 Pro、iPhone 16 Pro Max

史上最全iPhone 机型分辨率,屏幕尺寸,PPI详细数据!已更新到iPhone 16系列! 点击放大查看高清图 !

电商api接口:让数据成为生产力的第一利器

随着电子商务的蓬勃发展,数据已成为推动业务增长和优化用户体验的关键因素。为了满足商家和开发者对多元化电商服务的需求,聚合电商 API 接口平台应运而生。这类平台通过整合多个电商平台的 API 接口,为商家和开发者提供一站式的数据服务&…

Apisix离线安装

上传离线包 #ll apisix-3.2.2-0.el7.x86_64.rpm apisix-base-1.21.4.1.8-0.el7.x86_64.rpm apisix-dashboard-3.0.1-0.el7.x86_64.rpm cyrus-sasl-2.1.26-24.el7_9.x86_64.rpm cyrus-sasl-devel-2.1.26-24.el7_9.x86_64.rpm cyrus-sasl-gssapi-2.1.26-24.el7_9.x86_64.rpm cyr…

HTB-Unified(log4j2漏洞、MongoDb替换管理员密码)

前言 各位师傅大家好,我是qmx_07,今天给大家讲解Unified靶机 渗透过程 信息搜集 服务器开放了SSH服务,HTTP服务 访问网站 验证log4j2漏洞 8443端口:UniFi 网络 ,访问查询 是否有Nday漏洞利用 可以观察到UniFi的版…

【网络安全的神秘世界】渗透测试基础

🌝博客主页:泥菩萨 💖专栏:Linux探索之旅 | 网络安全的神秘世界 | 专接本 | 每天学会一个渗透测试工具 渗透测试基础 基于功能去进行漏洞挖掘 1、编辑器漏洞 1.1 编辑器漏洞介绍 一般企业搭建网站可能采用了通用模板&#xff…

【计算机网络】电路交换、电报交换、分组交换

【计算机网络】电路交换、电报交换、分组交换 目录 【计算机网络】电路交换、电报交换、分组交换1. 电路交换2. 电报交换3. 分组交换4. 基于分组交换~“虚电路交换”技术 1. 电路交换 电路交换(Circuit Switching):通过物理线路的连接,动态地…

linux_L2_linux删除文件

linux 删除文件 在Linux下删除文件有多种实现方法,以下是其中几种常见的方法: 方法一:使用rm命令删除单个文件 rm 文件路径例如,删除当前目录下的文件file.txt: rm file.txtQuestion :当你在Linux系统中使用rm命令删…

Git学习尚硅谷(005 idea集成git)

尚硅谷Git入门到精通全套教程(涵盖GitHub\Gitee码云\GitLab) 总时长 4:52:00 共45P 此文章包含第27p-第p32的内容 文章目录 忽略特定文件在家目录里创建这个文件在.gitconfig文件里配置这个文件 配置IDEA定位到git程序进行添加文件初始化本地库添加单个…

Mini-Omni 语言模型在流式传输中边思考边听说应用

引入简介 Mini-Omni 是一个开源的多模态大语言模型,能够在思考的同时进行听觉和语言交流。它具有实时端到端语音输入和流媒体音频输出的对话能力。 语言模型的最新进展取得了显著突破。GPT-4o 作为一个新的里程碑,实现了与人类的实时对话,展示了接近人类的自然流畅度。为了…

下一代 AI 教育:知识图谱RAG + 多智能体,听老师的话没前途,让老师听你的才是正道

下一代 AI 教育:知识图谱RAG 多智能体,听老师的话没前途,让老师听你的才是正道 下一代 AI 教育:基于最本质的用脑方式学习 理解 记忆?学习的 3 个层次文科:关联理解 关联分析 关联记忆秒背古诗古文商业…

前端用html写excel文件直接打开

源码 <html xmlns:o"urn:schemas-microsoft-com:office:office" xmlns:x"urn:schemas-microsoft-com:office:excel" xmlns"http://www.w3.org/TR/REC-html40"> <head><meta charset"UTF-8"><!--[if gte mso 9]&…

打架监测识别摄像机

打架监测识别摄像机 是一种用于监控和识别打架行为的智能监控设备。这种摄像机利用先进的人工智能和计算机视觉技术&#xff0c;能够准确识别出监控画面中发生的打架事件&#xff0c;从而及时采取必要的应对措施。 打架监测识别摄像机的工作原理是通过对监控画面的实时分析和识…

YOLOv8 人体姿态估计动作识别关键点检测(代码+教程)

YOLOv8 人体姿态判断 项目介绍 YOLOv8 人体姿态判断 是一个基于最新YOLOv8模型的深度学习项目&#xff0c;旨在识别和分析人体姿态。该项目利用先进的计算机视觉技术和深度学习框架&#xff0c;通过摄像头捕捉实时图像或处理存储图像&#xff0c;识别人体的关键点&#xff0c…

大语言模型如何助力药物开发? 哈佛George Church Lab最新综述

大语言模型因其展现出类人般的推理、工具使用和问题解决能力而备受瞩目&#xff0c;此外&#xff0c;它在化学、生物学等专业领域也展现出深厚的理解能力&#xff0c;进一步提升了其应用价值。本文阐述大语言模型可以在理解疾病机制、药物发现和临床试验三个药物发现的基本阶段…

【西电电装实习】5. 无人机模块及作用、上位机的操作

文章目录 前言一、硬件结构电源、电源电压测试电路晶振外围陀螺仪信号放大电路及天线空心杯&#xff08;电极&#xff09;驱动电路 软件设置整机装配PID 参数设置公式 参考文献 前言 西电电装实习&#xff0c;无人机原理图、上位机的调节方法 一、硬件结构 电源、电源电压测…

UEFI学习笔记(二):edk2构建编译流程

UEFI入门&#xff08;二&#xff09;&#xff1a;edk2项目编译流程 一、Build流程框架Build的三个阶段&#xff1a;1、Autogen2、Make3、ImageGen 二、编译构建步骤&#xff1a;1. 安装依赖工具2. 初始化构建环境3. 配置工具链和目标4. 定义平台配置5. 构建并编译 三、uefi-too…

C++面试3

一、常用设计模式 https://blog.csdn.net/m0_71530237/article/details/141140118?spm1001.2014.3001.5501 二、死锁以及解决方式&#xff1f; 死锁&#xff1a;一种常见的并发问题&#xff0c;发生在多个进程或线程因为竞争资源而陷入相互等待的状态&#xff0c;导致这些进…

【运维监控】Prometheus+grafana监控flink运行情况

运维监控系列文章入口&#xff1a;【运维监控】系列文章汇总索引 文章目录 一、prometheus二、grafana三、flink配置修改四、prometheus集成grafana监控flink1、修改prometheus配置文件2、导入grafana模板3、验证 本示例通过flink自带的监控信息暴露出来&#xff0c;然后将数据…

提权——Linux

一、系统漏洞提权 #kali的nmap命令 nmap -O 目标ip 通过当前系统的内核版本搜索当前系统的漏洞&#xff0c;进行利用 搜索漏洞 对linux系统的漏洞进行利用&#xff08;脏牛、脏管道等&#xff09; 利用漏洞搜索工具&#xff0c;搜索当前系统是否存在一些漏洞 linux-exp…