【JavaEE】IP协议 应用层协议

 🔥个人主页: 中草药

🔥专栏:【Java】登神长阶 史诗般的Java成神之路


🕶️一.IP地址

         IP协议(Internet Protocol)是TCP/IP协议族中最核心的协议之一,它定义了数据包在网络中传输的标准和规则。IP协议的设计初衷是为了实现大规模、异构网络的互联互通,并且分割了顶层网络应用和底层网络技术之间的耦合关系,以促进两者的独立发展 

我们这里研究的是IPv4 

  • 主机:配有IP地址
  • 路由器 :配有IP地址,并能进行路由选择
  • 节点:主机和路由器的统称

🥽二.报头格式

IPv4报头结构如下所示:

  1. 版本(Version, 4位) - 指定使用的IP协议版本。只有两个取值,4和6,对于IPv4,这部分值为4。
  2. 首部长度(Header Length, 4位) - 指明 报头的长度,以32位字(4字节)为单位。
  3. 服务类型(Type of Service, TOS, 8位) IP协议以那种模式进行工作,包含区分服务字段,用于描述数据包的优先级和其他服务质量要求。
  4. 总长度(Total Length, 16位) - 表示整个IP数据报的长度,以字节为单位。
  5. 标识(Identification, 16位) - 用于识别属于同一数据报的所有分片。涉及到组包拆包。
  6. 标志(Flags, 3位) - 主要用来控制分片行为。
    • 最高位(保留未使用)
    • 中间位(Don't Fragment, DF):表示当前是否是拆包/组包
    • 最低位(More Fragments, MF):表示当前包,是否是组包中的最后一个。
  7. 分片偏移(Fragment Offset, 13位) - 决定组包时候的先后顺序。
  8. 生存时间(Time to Live, TTL, 8位) - 数据报在网络中可以存在的最长时间,每经过一个路由器 TTL(不是s或者min,而是次数) 减一,当TTL为0时数据报将被丢弃。假设构造的一个IP数据报,目的IP不存在,如果让这样的数据报,无限传输,会消耗很多网络资源。
  9. 协议(Protocol, 8位) - 指明上层使用的协议类型,是传输给TCP还是UDP等。
  10. 头部校验和(Header Checksum, 16位) - 用于检测数据在传输中是否出错。
  11. 源IP地址(Source IP Address, 32位) - 发送方的IP地址。
  12. 目标IP地址(Destination IP Address, 32位) - 接收方的IP地址。
  13. 选项(Options) - 可选字段,用于携带特定的控制信息或实验用途。
  14. 填充(Padding) - 如果需要的话,用来确保报头的长度为32位的整数倍。

🥼三.版本

IP协议有两个主要版本:IPv4和IPv6。

  • IPv4 使用32位地址,这种地址空间随着互联网的扩张而逐渐耗尽
  • IPv6 采用128位地址,极大地扩展了地址空间,并引入了一些新的特性,如内置的安全性(如IPsec)和支持即插即用的自动配置

🦺四.主要功能

  • 地址管理:为网络上的每一个设备分配一个唯一的地址(即IP地址),从而使得数据可以在网络中被路由到正确的接收者
  • 路由选择:IP协议决定了数据包在网络中传输的最佳路径。这涉及到根据网络拓扑选择合适的路径,以确保数据包能够高效地到达目的地

👔五.IP地址

        IP地址,用来标识网络上的一个设备,期望的IP地址应该是唯一的,32位表示的数据范围是,0->42亿9千万,这样的数字在如今“移动互联网” “物联网” 时代已经不够用了,因此解决IP地址不够用的问题我们有三个方案

1.动态分配IP地址

         若设备上网就分配IP地址,不上网就不分配地址

2.NAT 网络地址转换

        NAT的核心思想是在一个网络边界路由器上维护一个地址转换表,这个表记录了内部私有IP地址与外部公有IP地址之间的映射关系。当内部网络中的设备需要与外部网络通信时,NAT会将数据包的源IP地址替换为公共IP地址,并且可能会改变源端口号来区分不同的会话。

  • 同一个局域网内,主机A访问主机B,不会涉及到NAT
  • 公网上的设备A,访问公网上的设备B,不会涉及到NAT
  • 一个局域网的主机A访问另一个局域网的主机B,NAT机制不允许
  • 局域网上的设备A,访问到公网上的设备B,主要涉及到NAT机制

当内部网络中的设备发送请求到外部网络时:

  1. 数据包到达NAT设备。
  2. NAT设备检查其转换表以找到相应的条目。
  3. 如果没有找到,则创建一个新的条目,并将内部私有IP地址和端口号替换为NAT设备上的公共IP地址和一个新的端口号。
  4. 修改后的数据包被转发到互联网。

对于从外部网络到内部网络的数据包,NAT设备会根据其转换表逆向操作,将公共IP地址和端口号转换回内部私有IP地址和端口号。

优点

  • 节约IP地址:通过使用私有IP地址范围(如10.x.x.x, 172.16.x.x - 172.31.x.x, 192.168.x.x),可以大大减少对全球唯一IP地址的需求。
  • 安全性:NAT可以隐藏内部网络结构,从而增加了一定程度的安全性。
  • 灵活性:可以轻松地添加新的内部主机而不需要重新配置它们的IP地址。

缺点

  • 性能开销:NAT需要处理额外的数据包头部修改工作,这可能会带来一些性能上的影响。
  • 协议支持:某些协议可能依赖于特定的端口行为或者需要透明地传输IP地址信息,这些情况下NAT可能会导致问题。
  • 复杂性:在NAT机制的网络环境是非常复杂的,随着网络规模的增长,管理NAT表可能会变得复杂。

 3.IPv6

该方法从根本原因解决了 IP地址不够分配的原因

IPv4用32位4个字节表示IP地址

IPv6用128位16个字节表示IP地址

除非未来人类的文明急速发展走向宇宙,否则只要人类困到地球上,IPv6足够人类用一辈子

IPv6与IPv4并不兼容,现如今IPv6在国内的普及程度非常高,已经超过70%

特殊的IP地址

1.主机号全为0

此时这个IP就表示当前网段(相当于网络号)

因此,再给局域网某个设备分配IP地址的时候,不能把主机号设置为全为0

2.主机号全为1

如果将主机号全设置为1,就成为了广播地址,用于给同一个链路中相互链接的所有主机发送数据包

3.127.*  环回IP(lookback)

自发自收,给这个ip发一个数据,使用环回Ip用于测试,网络程序大多是跨主机通信,往往先自行测试,一台主机的测试客户端和服务器之间鞥否正常交互

🎒六.网段划分

        IP地址的网段划分指的是将一个大的IP地址范围细分为多个小的子网的过程,也叫组网(组建网络)。这样做可以提高网络效率,简化网络管理,并有助于更好地控制网络流量。

组网的时候,需要我们针对每个上网的设备的IP地址进行设置,对于家庭网络这种相对简单的网络结构都有自动分配IP地址,针对如同商场,学校这种更复杂的网络环境,需要手动设置

子网掩码

为了确定一个IP地址的哪一部分是网络号,哪一部分是主机号,我们使用子网掩码(subnet mask)。子网掩码也是一个32位的二进制数,同样表示为点分十进制形式。它与IP地址进行按位与运算(AND operation),以确定网络号和主机号。

例如,对于IP地址192.168.1.1,如果子网掩码是255.255.255.0,则网络号是前三个八位字节192.168.1,而主机号是最后一个八位字节1。网络掩码也是32位的整数,左半部分都是1,右半部分都是0,不能0 1穿插出现

网络中规定:

同一个局域网中的设备,网络号必须相同,设备号必须不同

两个相邻的局域网,网络号不同

过去提过一种花粉网络号和主机号的方案,把所有的IP地址划分为五类

  • A类 0.0.0.0到127.255.255.255
  • B类 128.0.0.0到191.255.255.255
  • C类 192.0.0.0到223.255.255.255
  • D类 224.0.0.0到239.255.255.255
  • E类 240.0.0.0到247.255.255.255

其中AB类的主机号太多了,实际上一般没有这么大的局域网,这属于上古网络时期的网络划分时代,现在基本上已经没有了

CIDR(无类别域间路由)

        CIDR(Classless Inter-Domain Routing)是一种用于替代传统分类网络的IP地址分配方式。它允许管理员使用斜杠表示法(如192.168.1.0/24),其中斜杠后面的数字代表子网掩码中的网络位数。例如,/24意味着前24位用于网络号,剩下的8位用于主机号。主要用途如下:

引入一个额外的子网掩码类区分网络号和主机号

将IP地址和子网掩码进行“按位与”操作得到的是网络号

        通过使用CIDR,可以更加有效地利用IP地址空间。例如,一个/24的子网可以进一步划分为两个/25的子网,或者四个/26的子网等等,直到满足所需的主机数量为止。

🧢七.路由选择

        IP地址的路由选择是指在网络中决定数据包从源地址到目的地址的最佳路径的过程。路由选择涉及到路由器如何决定数据包应该通过哪个接口转发,以及如何将数据包发送到最终的目的地。下面是关于IP地址路由选择的一些详细信息:

        路由选择的核心是路由器如何选择合适的路径将数据包从源地址传递到目的地址。路由器使用路由表来存储关于可达网络的信息,包括下一跳地址、出站接口、度量值等。当路由器接收到数据包时,它会查找路由表来确定如何转发数据包。

路由表的组成

路由表是路由器内部维护的重要数据,可以类似理解为hash表,key相当于IP地址(网络号),value相当于对应的网络接口(往哪个方向走)

路由表通常包含以下几个要素:

  • 前缀(Prefix):目标网络的地址及其子网掩码。
  • 下一跳(Next Hop):路由器应该将数据包转发到的下一个路由器的IP地址。
  • 出站接口(Interface):路由器上用来转发数据包的物理接口。
  • 度量值(Metric):用于评估路径优劣的标准,不同路由协议使用不同的度量值,如跳数、带宽、延迟等。
  • 路由来源(Source):路由信息的来源,可能是直连网络、静态路由或动态路由协议

路由的过程,是“跳一跳”的问路过程

所谓的一跳,就是在数据链路层的中的一个区间,具体在以太网从源MAC地址到目的MAC地址之间的帧传输空间

IP数据包的传输过程也和问路一般

  • 当IP数据包到达路由器时,路由器先会查看目的IP
  • 路由器决定这个数据包是能够直接发送给目标主机,还是需要发送给下一个路由器
  • 依次反复,一直到达目标 IP 地址

💎八.总结与反思

我从来不知道什么是苦闷,失败了再来,前途是自己努力创造出来的。——徐特立

简介

IP协议是一种无连接、尽最大努力交付的协议,它负责将数据从源主机传输到目的主机。IP协议定义了数据包的格式,并规定了如何将数据包发送到目的地。IP协议有两个主要版本:IPv4和IPv6,两者都在当今的网络环境中发挥着重要作用。

IPv4

IPv4是最早的IP协议版本,它使用32位地址,可以提供大约43亿个唯一的地址。尽管IPv4在互联网发展的早期阶段表现良好,但随着互联网用户的快速增长,IPv4地址资源逐渐耗尽。

IPv6

为了解决IPv4地址短缺的问题,IPv6应运而生。IPv6使用128位地址,提供了几乎无限的地址空间。此外,IPv6还引入了一些新的特性,如内置的安全性和自动配置能力。

IP数据报格式

无论是IPv4还是IPv6,数据报(Datagram)都是IP协议处理的基本单位。数据报包含头部信息和用户数据两部分。

IPv4数据报

  • 版本(Version):指明所使用的IP协议版本。
  • 头部长度(IHL):指示头部的长度。
  • 服务类型(TOS):现在通常用于区分服务等级。
  • 总长度(Total Length):整个数据报的长度。
  • 标识符(Identification):用于标识数据报。
  • 标志(Flags):指示是否允许分片。
  • 片段偏移(Fragment Offset):如果数据报被分片,指示各片段的相对位置。
  • 生存时间(TTL):数据报在网络中的存活时间。
  • 协议(Protocol):指示高层协议类型。
  • 头部校验和(Header Checksum):用于检测头部中的错误。
  • 源IP地址(Source IP Address):发送数据报的源地址。
  • 目的IP地址(Destination IP Address):接收数据报的目的地址。
  • 选项(Options):可选字段,用于实验或特殊用途。
  • 填充(Padding):使头部长度为32比特的整数倍。

IPv4是最早的IP协议版本,它使用32位地址,可以提供大约43亿个唯一的地址。尽管IPv4在互联网发展的早期阶段表现良好,但随着互联网用户的快速增长,IPv4地址资源逐渐耗尽。

IPv6

为了解决IPv4地址短缺的问题,IPv6应运而生。IPv6使用128位地址,提供了几乎无限的地址空间。此外,IPv6还引入了一些新的特性,如内置的安全性和自动配置能力。

        IP协议作为TCP/IP模型中的网络层协议,是互联网技术的基石之一。它定义了数据在网络中的传输方式,使得世界各地的设备能够相互通信。随着IPv6的普及,IP协议将继续支撑着互联网的持续发展。


🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀🍀

以上,就是本期的全部内容啦,若有错误疏忽希望各位大佬及时指出💐

  制作不易,希望能对各位提供微小的帮助,可否留下你免费的赞呢🌸

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/424312.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

快速使用react 全局状态管理工具--redux

redux Redux 是 JavaScript 应用中管理应用状态的工具,特别适用于复杂的、需要共享状态的中大型应用。Redux 的核心思想是将应用的所有状态存储在一个单一的、不可变的状态树(state tree)中,状态只能通过触发特定的 action 来更新…

测试工程师学历路径:从功能测试到测试开发

现在软件从业者越来越多,测试工程师的职位也几近饱和,想要获得竞争力还是要保持持续学习。基本学习路径可以从功能测试-自动化测试-测试开发工程师的路子来走。 功能测试工程师: 1、软件测试基本概念: 学习软件测试的定义、目的…

微信小程序开发——比较两个数字大小

在这里我们使用的工具是 需要自行安装和配置。 在微信小程序中比较两个数字大小有以下几种方式: 一、普通条件判断 在小程序的.js 文件中,先定义两个数字,如let num1 5; let num2 3;。通过if - else if - else语句,根据num1与…

【测试报告】博客系统

1.项目背景 在互联网高度发达的今天,越来越多的人开始学习编程,诞生了越来越多的程序员,但他们没有可以互相交流学习、分享经验的平台。本项目旨在为更多的程序员以及新手小白提供一个能够促进学习、共同进步,让小白也能成为大神的交流学习平台 1.1测试目标以及测试…

【数据结构】8——图3,十字链表,邻接多重表

数据结构8——图3,十字链表,邻接多重表 文章目录 数据结构8——图3,十字链表,邻接多重表前言一、十字链表结构例子 复杂例子 二、邻接多重表(Adjacency Multilist)例子 前言 除了之前的邻接矩阵和邻接表 …

Vue 第三方调用若依系统实现系统单点登录

应用场景 甲方现有平台系统拟集成我方新开发系统&#xff0c;实现单点登录功能&#xff0c;即用户登录主平台后&#xff0c;无需重复登录即可无缝访问新系统&#xff0c;提升用户体验与操作效率。 解决方案 实现代码 前端 Step:1 新建ssoLogin.vue页面 <template><d…

视觉SLAM ch5——相机与图像

一、单目模型 前言&#xff1a;本大标题下1~4部分讲述的都是单目针孔相机 SLAM的数学本质可以抽象为运动方程&#xff08;x&#xff09;和观测方程&#xff08;z&#xff09;&#xff08;书上的第二部分&#xff09; 教材第二章截图 书中P24页截图 其中的未知量为xk&#xff…

TiDB从0到1学习笔记(精华篇)

历时四个月&#xff0c;恭喜赵老师的《TiDB从0到1》 系列文章顺利完结&#xff0c;小编再次梳理一遍文稿&#xff0c;并附注解分享给大家。 整体架构 从 TiDB 1.0 到 8.0&#xff0c;TiDB 的体系结构一直在不断演进。接下来让我们一起看看整体架构的变化。 TiDB v1 TiDB v1&…

通过C# 裁剪PDF页面

在处理PDF文档时&#xff0c;有时需要精确地裁剪页面以适应特定需求&#xff0c;比如去除广告、背景信息或者仅仅是为了简化文档内容。 本文将指导如何使用免费.NET控件通过C#实现裁剪PDF页面。 免费库 Free Spire.PDF for .NET 支持在 .NET (C#, VB.NET, ASP.NET, .NET Core)…

AI 加持的云端 IDE——三种方法高效开发前后端聊天交互功能

以下是「豆包 MarsCode 体验官」优秀文章&#xff0c;作者努力的小雨。 豆包 MarsCode 豆包MarsCode 编程助手支持的 IDE: 支持 Visual Studio Code 1.67.0 及以上版本&#xff0c;以及 JetBrains 系列 IDE&#xff0c;如 IntelliJ IDEA、Pycharm 等&#xff0c;版本要求为 22…

告别繁琐粘贴,CleanClip Mac 版,让复制粘贴变得简单快捷!粘贴队列功能太强大了!

告别繁琐粘贴&#xff0c;CleanClip Mac 版&#xff0c;让复制粘贴变得简单快捷&#xff01; CleanClip for Mac &#x1f4cb; 是一款专为Mac用户设计的高效剪贴板管理工具。它解决了传统复制粘贴过程中的繁琐问题&#xff0c;让你的工作流程更加顺畅和高效。 &#x1f504;…

jenkins流水线+k8s部署springcloud微服务架构项目

文章目录 1.k8s安装2.jenkins安装3.k8s重要知识1.简介2.核心概念3.重要命令1.查看集群消息2.命名空间3.资源创建/更新4.资源查看5.描述某个资源的详细信息6.资源编辑7.资源删除8.资源重启9.查看资源日志10.资源标签 4.k8s控制台1.登录2.界面基本操作1.选择命名空间2.查看命名空…

一些写leetcode的笔记

标准库中的string类没有实现像C#和Java中string类的split函数&#xff0c;所以想要分割字符串的时候需要我们自己手动实现。但是有了stringstream类就可以很容易的实现&#xff0c;stringstream默认遇到空格、tab、回车换行会停止字节流输出。 #include <sstream> #incl…

六、二分搜索-算法总结

文章目录 六、二分搜索6.1 简介6.2 典型实例 -- 二分查找6.2 模板6.3 常见题目6.3.1 搜索插入位置6.3.2 搜索二维矩阵6.3.3 寻找旋转排序中数组中的最小值6.3.4 寻找旋转排序数组中的最小值 II6.3.5 搜索旋转排序数组6.3.6 搜索旋转排序数组 II 总结 六、二分搜索 6.1 简介 给…

电学基础概念详解及三相电公式汇总

​​​​​​​ 本文全面介绍了电路的基本组成、电学核心概念以及三相电的常用公式。首先&#xff0c;通过水力学中的现象类比&#xff0c;生动解释了电路中电池、开关、电阻和灯泡等元素的功能&#xff0c;帮助读者更好地理解电压、电流和电阻之间的关系。随后&#xff0c;详…

【笔记】进制转换

文章目录 一、任意进制转十进制1、整数转化成十进制&#xff08;1&#xff09;二进制转十进制&#xff08;2&#xff09;八进制转十进制 2、小数转化成十进制&#xff08;1&#xff09;二进制转十进制&#xff08;2&#xff09;八进制转十进制 3、代码1、整数转化成十进制2、小…

OpenCV-Python笔记(上)

安装 全局安装 pip install opencv-python项目虚拟环境安装 # 进入项目根路径执行 .venv/bin/pip install opencv-python计算机眼中的图像 一张图片由大小比如&#xff08;100*100&#xff09;决定&#xff0c;说明存在100*100的像素点&#xff0c;每个像素点存在颜色通道&…

Neo4j入门案例:西游记

创建一个基于《西游记》中“孙悟空”的黑神话版本的知识图谱。这个图谱将会包括《西游记》中的一些主要角色、地点、事件以及它们之间的关系。我们将创建至少10个节点和20个关系&#xff0c;并提供相应的Cypher语句。 数据模型定义 实体类型&#xff08;节点&#xff09; 角色…

Nuxt Kit 组件管理:注册与自动导入

title: Nuxt Kit 组件管理:注册与自动导入 date: 2024/9/15 updated: 2024/9/15 author: cmdragon excerpt: Nuxt Kit 为组件的注册和导入提供了灵活高效的解决方案。无论你是要批量导入组件,还是单独处理特定组件,这些工具都能够满足你的需求。使用这些方法可以显著提升…

路径规划——D*算法

路径规划——D*算法 D Star算法是一种用于动态环境下的算法&#xff0c;它可以在环境变化时快速更新路径。 算法原理 D Star算法是一种反向增量式搜索算法&#xff0c;反向即算法从目标点开始向起点逐步搜索&#xff1b;增量式搜索&#xff0c;即算法在搜索过程中会计算每一…