物品识别——基于python语言

目录

1.物品识别

2.模型介绍

3.文件框架

4.代码示例

4.1 camera.py

4.2 interaction.py

4.3 object_detection.py

4.4 main.py

4.5 运行结果

5.总结


1.物品识别

该项目使用Python,OpenCV进行图像捕捉,进行物品识别。我们将使用YOLO(You Only Look Once)模型进行物品识别,YOLO是一个高效的实时物体检测系统。

2.模型介绍

YOLO(You Only Look Once)是一种目标检测算法,它在实时性和精确度上取得了很好的平衡。它的核心思想是在一张图片上同时预测出所有物体的位置和类别,而无需像传统的区域提议网络(R-CNN)那样分步骤进行。

3.文件框架

 models中的定义标签文件可以搜索yolo模型来找,下面的四个代码文件是主文件,camera是调用电脑摄像头,interaction是调用opencv绘制图像框,object_detection是定义物品检测函数,main是主函数。

运行main函数即可实现物品检测。

4.代码示例

4.1 camera.py

import cv2  # 导入OpenCV库def get_camera_frame():cap = cv2.VideoCapture(0)  # 打开摄像头if not cap.isOpened():raise Exception("无法打开摄像头。")  # 如果无法打开摄像头,抛出异常ret, frame = cap.read()  # 读取帧cap.release()  # 释放摄像头if not ret:raise Exception("读取照片信息失败。")  # 如果读取失败,抛出异常return frame  # 返回捕捉到的帧

4.2 interaction.py

import cv2  # 导入OpenCV库def draw_boxes(frame, detections):for (class_name, confidence, box) in detections:x, y, w, h = boxlabel = f"{class_name} {confidence:.2f}"  # 创建标签cv2.rectangle(frame, (x, y), (x + w, y + h), (0, 255, 0), 2)  # 绘制矩形框cv2.putText(frame, label, (x, y - 10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, (0, 255, 0), 2)  # 绘制标签return frame  # 返回绘制后的帧

4.3 object_detection.py

import cv2  # 导入OpenCV库,用于计算机视觉任务
import numpy as np  # 导入NumPy库,用于处理数组class ObjectDetector:def __init__(self, config_path, weights_path, names_path):# 初始化YOLO模型self.net = cv2.dnn.readNetFromDarknet(config_path, weights_path)self.layer_names = self.net.getLayerNames()# 获取YOLO模型的输出层self.output_layers = [self.layer_names[i - 1] for i in self.net.getUnconnectedOutLayers()]# 读入类别名称with open(names_path, 'r') as f:self.classes = [line.strip() for line in f.readlines()]def detect_objects(self, frame):height, width = frame.shape[:2]  # 获取图像的高度和宽度# 将图像转换为YOLO模型输入所需的blob格式blob = cv2.dnn.blobFromImage(frame, 0.00392, (416, 416), (0, 0, 0), True, crop=False)self.net.setInput(blob)  # 设置YOLO模型的输入outs = self.net.forward(self.output_layers)  # 前向传播,获取检测结果class_ids = []  # 存储检测到的类别IDconfidences = []  # 存储检测到的置信度boxes = []  # 存储检测到的边框# 处理每个输出层的检测结果for out in outs:for detection in out:scores = detection[5:]  # 获取每个类别的置信度分数class_id = np.argmax(scores)  # 获取置信度最高的类别IDconfidence = scores[class_id]  # 获取最高置信度if confidence > 0.5:  # 过滤低置信度的检测结果center_x = int(detection[0] * width)center_y = int(detection[1] * height)w = int(detection[2] * width)h = int(detection[3] * height)x = int(center_x - w / 2)y = int(center_y - h / 2)boxes.append([x, y, w, h])confidences.append(float(confidence))class_ids.append(class_id)# 非极大值抑制,去除冗余的边框indices = cv2.dnn.NMSBoxes(boxes, confidences, 0.5, 0.4)result = []if len(indices) > 0:for i in indices.flatten():  # 确保indices是一个可迭代的列表box = boxes[i]result.append((self.classes[class_ids[i]], confidences[i], box))return result

4.4 main.py

import sys
import os
import cv2  # 导入OpenCV库
from camera import get_camera_frame  # 导入相机捕捉函数
from object_detection import ObjectDetector  # 导入物体检测类
from interaction import draw_boxes  # 导入绘制边框函数def main():# 配置文件路径config_path = "./pythonProject/ai_modle_win/wupin/models/yolov3.cfg"weights_path = "./pythonProject/ai_modle_win/wupin/models/yolov3.weights"names_path = "./pythonProject/ai_modle_win/wupin/models/coco.names"# 初始化物体检测器detector = ObjectDetector(config_path, weights_path, names_path)while True:frame = get_camera_frame()  # 获取摄像头帧detections = detector.detect_objects(frame)  # 检测物体frame = draw_boxes(frame, detections)  # 绘制检测结果cv2.imshow("Object Detection", frame)  # 显示结果if cv2.waitKey(1) & 0xFF == ord('q'):  # 按下 'q' 键退出breakcv2.destroyAllWindows()  # 关闭所有窗口if __name__ == "__main__":main()

4.5 运行结果

5.总结

YOLO的主要用途是计算机视觉中的目标检测任务,例如自动驾驶中的行人和车辆识别、安防监控、无人机拍摄分析等场景,它能够实现实时检测,并且对于小目标和大目标都具备较好的性能。你也快来试一试吧!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/425413.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

re题(23)BUUFCTF-[FlareOn4]login

BUUCTF在线评测 (buuoj.cn) 下载后打开看到是一个txt和一个html 分别打开看看,txt是提示,html应该就是要破解的网页 打开网页,查看源代码 找到程序,变灰的部分是关键,是指如果是前13个字母就加13,如果是…

小程序开发设计-第一个小程序:注册小程序开发账号②

上一篇文章导航: 小程序开发设计-小程序简介①-CSDN博客https://blog.csdn.net/qq_60872637/article/details/142217803?sharetypeblogdetail&sharerId142217803&sharereferPC&sharesourceqq_60872637&spm1011.2480.3001.8118 须知:不…

C++设计模式——Prototype Pattern原型模式

一,原型模式的定义 原型模式是一种创建型设计模式,它允许通过克隆已有对象来创建新对象,从而无需调用显式的实例化过程。 原型模式的设计,使得它可以创建一个与原型对象相同或类似的新对象,同时又可以减少对象实例化…

Rust Windows下编译 静态链接VCRuntime140.dll

Rust 编译出来的exe默认动态链接VC运行库,分发电脑上需要安装有Microsoft Visual C Redistributable for Visual Studio 2015运行库。 编译时能静态链接进去,就省去客户端未安装运行库的问题。方法如下: 只需在当前根目录下新建.cargo\config.toml&#…

【可视化大屏系列】数据列表自动滚动效果

要实现列表的自动滚动效果,这里提供两种解决方案: 1.vue插件 官方文档:链接: vue-seamless-scroll (1)安装依赖 npm install vue-seamless-scroll --save(2)全局注册(main.js中&a…

【CTF Web】BUUCTF BUU UPLOAD COURSE 1 Writeup(文件上传+PHP+文件包含漏洞)

BUU UPLOAD COURSE 1 1 上课用~ 点击启动靶机。 解法 疑似存在文件包含漏洞。 http://15a5666e-1796-4f76-b892-0b69cf97df8e.node5.buuoj.cn:81/index.php?fileupload.php查看网页源代码。判断是后端检查。 <!DOCTYPE html> <html lang"zh-cn"> &…

多目标优化算法求解LSMOP(Large-Scale Multi-Objective Optimization Problem)测试集,MATLAB代码

LSMOP&#xff08;Large-Scale Multi-Objective Optimization Problem&#xff09;测试集是用于评估大规模多目标优化算法性能的一组标准测试问题。这些测试问题通常具有大量的决策变量和目标函数&#xff0c;旨在模拟现实世界中的复杂优化问题。 LSMOP测试集包含多个子问题&am…

element-plus的面包屑组件el-breadcrumb

面包屑组件主要用来显示当页面路径&#xff0c;以及快速返回之前的页面。 涉及2个组件 el-breadcrumb 和el-breadcrumb-item, el-breadcrumb的spearator指定item的分隔符 el-breadcrumb-item的to和replace属性和vue-router的一致&#xff0c;需要结合vue_router一起使用 用法…

通过python提取PDF文件指定页的图片

整体思路 要从 PDF 文件中提取指定页和指定位置的图片&#xff0c;可以分几个步骤来实现&#xff1a; 1.1 准备所需工具与库 在 Python 中处理 PDF 和图像时&#xff0c;需要使用几个库&#xff1a; PyMuPDF (fitz)&#xff1a;用于读取和处理 PDF 文件&#xff0c;可以精确…

RabbitMQ高级篇,进阶内容

强烈建议在看本篇博客之前快速浏览文章&#xff1a;RabbitMQ基础有这一篇就够了 RabbitMQ高级篇 0. 前言1. 发送者的可靠性1.1 生产者重试机制1.2 生产者确认机制1.3 实现生产者确认 2. MQ的可靠性2.1 MQ持久化2.2 LazyQueue 3. 消费者的可靠性3.1 消费者确认机制3.2 失败重试策…

Web植物管理系统-下位机部分

本节主要展示上位机部分&#xff0c;采用BSP编程&#xff0c;不附带BSP中各个头文件的说明&#xff0c;仅仅是对main逻辑进行解释 main.c 上下位机通信 通过串口通信&#xff0c;有两位数据验证头&#xff08;verify数组中保存对应的数据头 0xAA55) 通信格式 上位发送11字节…

STM32外设之LTDC/DMA2D—液晶显示(野火)

文章目录 显示屏有几种?基本参数控制?显存 LTDC 液晶控制器LTDC 结构框图LTDC 初始化结构体 LTDC_InitTypeDefLTDC 层级初始化结构体 DMA2D 图形加速器DMA2D 初始化结构体 要了解什么 屏幕是什么&#xff0c;有几种屏&#xff0c;有什么组成。 怎么控制&#xff0c;不同屏幕控…

Linux:RPM软件包管理以及Yum软件包仓库

挂载光驱设备 RPM软件包管理 RPM软件包简介 区分软件名和软件包名 软件名&#xff1a;firefox 软件包名&#xff1a;firefox-52.7.0-1.el7.centos.x86_64.rpm 查询软件信息 查询软件&#xff08;参数为软件名&#xff09; ]# rpm -qa #当前系统中所有已安装的软件包 ]# r…

滑坡落石检测数据集

滑坡落石检测数据集 1500张 滑坡落石 带标注 voc yolo 项目背景&#xff1a; 滑坡落石是地质灾害中的一种常见现象&#xff0c;它对人类生活和基础设施构成了严重威胁。及时准确地检测滑坡落石对于预防灾害发生、减少损失至关重要。传统的检测方法往往依赖于人工巡查&#xff…

蓝桥杯—STM32G431RBT6按键的多方式使用(包含软件消抖方法精讲)从原理层面到实际应用(一)

新建工程教程见http://t.csdnimg.cn/JySLg 点亮LED教程见http://t.csdnimg.cn/Urlj5 末尾含所有代码 目录 按键原理图 一、按键使用需要解决的问题 1.抖动 1.什么是抖动 2.抖动类型 3.如何去消除抖动 FIRST.延时函数消抖&#xff08;缺点&#xff1a;浪费CPU资源&#xff…

transformer模型进行英译汉,汉译英

上面是在测试集上的表现 下面是在训练集上的表现 上面是在训练集上的评估效果 这是在测试集上的评估效果,模型是transformer模型,模型应该没问题,以上的是一个源序列没加结束符和加了结束符的情况。 transformer源序列做遮挡填充的自注意力,这就让编码器的输出中每个token的语…

第312题|二重积分求旋转体体积(二)|武忠祥老师每日一题

解题思路&#xff1a;先画出图像&#xff0c;再利用旋转体体积计算公式进行解题。 1. 旋转体体积计算公式&#xff1a; 2.点到直线计算公式&#xff1a; 有了上面两条知识储备之后我们开始计算。 第一步&#xff1a;先计算出点到直线的距离&#xff1a; ymx&#xff0c;y-mx…

web开发 之 HTML、CSS、JavaScript、以及JavaScript的高级框架Vue(学习版2)

一、前言 接下来就是来解决这些问题 二、 Ajax 1.ajax javscript是网页三剑客之一&#xff0c;空用来控制网页的行为的 xml是一种标记语言&#xff0c;是用来存储数据的 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-…

JVM字节码与局部变量表

文章目录 局部变量表javap字节码指令分类 指令指令数据类型前缀加载和存储指令加载常量算术指令其他指令 字节码示例说明 局部变量表 每个线程的帧栈是独立的&#xff0c;每个线程中的方法调用会产生栈帧&#xff0c;栈帧中保存着方法执行的信息&#xff0c;例如局部变量表。 …

单硬盘安装Win10和麒麟V10双系统指导建议

随着信创电脑的普及,国产操作系统也逐渐走进了大家的视野,许多人选择了国产操作系统来体验其开源、安全、高效的特性,而Windows系统也是大多数人习惯使用的操作系统。一台电脑上同时安装银河麒麟V10和Windiows10双系统也成为了非常常见的需求。那么,如何在一台电脑上安装银…