2024华为杯研赛E题保姆级教程思路分析

E题题目:高速公路应急车道紧急启用模型

今年的E题设计到图像/视频处理,实际上,E题的难度相对来说较低,大家不用畏惧视频的处理,被这个吓到。实际上,这个不难,解决了视频的处理问题,剩下的问题难度相对不高。

1 总体分析

1.1 问题背景:

本题背景围绕高速公路拥堵现象,主要探讨如何合理利用应急车道缓解车流压力。高速公路瓶颈路段(如匝道和桥梁入口)容易发生拥堵,而扩宽车道代价高昂,因此在特定情况下临时启用应急车道成为有效解决方案。题目要求通过监测四个观测点的交通参数(车流量、密度、速度),建立数学模型进行拥堵预警,评估临时使用应急车道的效果,并优化监控点布局,以帮助管理者做出科学决策。

1.2 问题设定:

问题一

针对题目提供的数据,统计四个观测点的交通流参数随时间的变化规律:

车流量的变化规律:分析四个观测点的车流量随时间的变化情况。车流量指的是单位时间内通过某个观测点的车辆数量。

车流密度的变化规律:分析四个观测点的车流密度随时间的变化情况。车流密度指的是单位长度内的车辆数,反映了车道上车辆的分布情况。

车速的变化规律:分析四个观测点的车速随时间的变化情况。车速是指通过某个观测点的车辆的平均速度。

问题二

建立交通流拥堵模型,利用交通流在四个观测点的基本参数(车流密度、流量、速度等)以及道路情况(两行车道),给出从第三点到第四点之间路段可能出现持续拥堵的实时预警(如:拥堵10分钟前预警)及其依据。

问题三

利用题目提供的监控视频数据验证所建立模型的有效性。通过观测数据来评估模型的准确性和适用性

问题四

设计合理的规则或算法,实时决策是否启用应急车道,并量化模型启用应急车道对缓解道路拥堵的作用。监控数据没有针对应急车道的启用问题布置,因此需要结合实际情况,提出合理的监控点设置方案,以提升决策的科学性和经济性。

1.3 核心要点:

该问题属于交通工程与应急管理优化类型的数学建模题,具体涉及交通流模型、实时监控与预警、决策优化等方面。它综合了交通流理论、统计分析、动态决策和优化控制,要求对高速公路上的交通流变化进行实时建模,并提出有效的应急车道启用策略。

解题的关键是交通参数的统计与预测、拥堵预警模型的构建、应急车道启用的优化决策,并通过数据验证确保模型的实用性和准确性。

1.4建模思路:

数据预处理与分析:

提取和整理数据:从四个观测点的视频数据中提取车流量、密度、速度等关键参数,完成数据清洗与整理。

时间序列分析:分析这些参数随时间变化的规律,为后续模型构建提供基础信息。

交通流模型的建立:

根据基本交通流理论(如流量-密度-速度关系模型),建立反映交通状态的模型,描述四个观测点之间的交通流动态变化。

选用合适的模型(如LWR模型、元胞自动机模型或马尔科夫链等),描述车辆在该路段的流动特性。

拥堵预警模型的构建:

根据交通流模型,设定拥堵阈值,通过观测到的车流密度、流量和速度变化,预测拥堵趋势,并实现对第三到第四观测点之间路段的实时预警(提前10分钟)。

应急车道启用决策模型:

在拥堵预警基础上,设计临时启用应急车道的决策规则,通过多指标(如车流量、车速、密度)判断何时启用应急车道。

利用优化算法(如动态规划、模糊逻辑、决策树等)优化启用策略,确保决策在不同拥堵情境下的有效性。

模型验证与效果评估:

利用实际监控视频数据验证模型的准确性,评估启用应急车道对缓解拥堵的效果,并进行模型的调整与优化。

监控点优化布局:

根据模型分析结果,提出监控点的优化布局方案,确保在第三至第四观测点之间的路段能够更科学、经济地进行实时监控与决策。

整体思路总结:

从数据分析入手,建立交通流和预警模型,设计应急车道启用策略,并通过模型验证与优化实现科学决策和布局优化。这一系列步骤形成了从数据到决策的完整数学建模流程。

2 问题分析与解题思路

首先针对问题一的三个小问,分别进行问题分析与解题思路。

问题1.1

(1)数据读取与预处理

从四个观测点的视频监控数据中提取各个时间段的车辆通过数量,并计算每个观测点在每个时间段内的车流量。

(2)车流量计算公式

利用该公式描述流量、密度和速度之间的关系,分析密度随时间的变化,并识别出高密度时期。

(5)时间序列与密度特征分析

绘制车流密度的时间变化曲线,提取密度的平均值、最大值、最小值等特征,识别潜在的拥堵时段。

2-4问后续更新

其中更详细的思路、各题目思路、代码、讲解视频、成品论文及其他相关内容,可以看下面的名片获得哦!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/428371.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

L3 逻辑回归

🍨 本文为🔗365天深度学习训练营 中的学习记录博客🍖 原作者:K同学啊 在周将使用 LogisticRegression 函数对经典的鸢尾花 (Iris) 数据集进行分类。将详细介绍逻辑回归的数学原理。 1. 逻辑回归的数学原理 逻辑回归是一种线性分…

如何短期提高品牌声量?说几个有效策略

在如今竞争激烈的市场环境中,品牌声量成为了衡量一个品牌市场影响力的关键指标。一个强大的品牌声量不仅可以增加品牌的可见度,还能有效提升品牌的市场竞争力。但是,如何有效提升品牌声量,成为很多企业面临的挑战。首先我们要明确…

R语言机器学习算法实战系列(二) SVM算法(Support Vector Machine)

文章目录 介绍原理应用方向下载数据加载R包导入数据数据预处理数据描述数据切割标准化数据设置参数训练模型预测测试数据评估模型模型准确性混淆矩阵模型评估指标ROC CurvePRC Curve特征的重要性保存模型总结系统信息介绍 支持向量机(Support Vector Machine,简称SVM)是一种…

Django_Vue3_ElementUI_Release_004_使用nginx部署

1. nginx安装配置 1.1 下载nginx Download nginx 1.2 测试一下 1.3 进入nginx用命令操作 2. 部署 2.1 前端部署 2.1.1 修改nginx监听配置 …conf/nginx.conf http {... # 这里不进行修改server {listen 8010; # 监听 80 端口server_name 192.168.10.24; # 输入服务器 ip…

Matlab simulink建模与仿真 第十八章(Stateflow状态机)

参考视频:Simulink/stateflow的入门培训_哔哩哔哩_bilibili 一、概述 Stateflow是集成于Simulink中的图形化设计与开发工具,主要用于针对控制系统中的复杂控制逻辑进行建模与仿真,或者说,Stateflow适用于针对事件响应系统进行建模…

深度学习:(五)初识神经网络

(一)神经网络的层数 除去输入层,但包括输出层,每一层都有自己的参数。 输入层称为第零层。 (二)最简单的神经网络(逻辑回归) 下图中的小圆圈,代表了一种运算。且一个小…

基于深度学习的花卉智能分类识别系统

温馨提示:文末有 CSDN 平台官方提供的学长 QQ 名片 :) 1. 项目简介 传统的花卉分类方法通常依赖于专家的知识和经验,这种方法不仅耗时耗力,而且容易受到主观因素的影响。本系统利用 TensorFlow、Keras 等深度学习框架构建卷积神经网络&#…

【第十三章:Sentosa_DSML社区版-机器学习聚类】

目录 【第十三章:Sentosa_DSML社区版-机器学习聚类】 13.1 KMeans聚类 13.2 二分KMeans聚类 13.3 高斯混合聚类 13.4 模糊C均值聚类 13.5 Canopy聚类 13.6 Canopy-KMeans聚类 13.7 文档主题生成模型聚类 13.8 谱聚类 【第十三章:Sentosa_DSML社…

环境搭建2(游戏逆向)

#include<iostream> #include<windows.h> #include<tchar.h> #include<stdio.h> #pragma warning(disable:4996) //exe应用程序 VOID PrintUI(CONST CHAR* ExeName, CONST CHAR* UIName, CONST CHAR* color, SHORT X坐标, SHORT y坐标, WORD UIwide, W…

硬件工程师笔试面试——开关

目录 11、开关 11.1 基础 开关原理图 开关实物图 11.1.1 概念 11.1.2 常见的开关类型及其应用 11.2 相关问题 11.2.1 开关的工作原理是什么? 11.2.2 在设计一个电子系统时,如何选择最适合的开关类型? 11.2.3 不同类型的开关在实际应用中有哪些优势和局限性? 11.…

AI+教育|拥抱AI智能科技,让课堂更生动高效

AI在教育领域的应用正逐渐成为现实&#xff0c;提供互动性强的学习体验&#xff0c;正在改变传统教育模式。AI不仅改变了传统的教学模式&#xff0c;还为教育提供了更多的可能性和解决方案。从个性化学习体验到自动化管理任务&#xff0c;AI正在全方位提升教育质量和效率。随着…

使用Renesas R7FA8D1BH (Cortex®-M85)实现多功能UI

目录 概述 1 系统框架介绍 1.1 模块功能介绍 1.2 UI页面功能 2 软件框架结构实现 2.1 软件框架图 2.1.1 应用层API 2.1.2 硬件驱动层 2.1.3 MCU底层驱动 2.2 软件流程图 4 软件功能实现 4.1 状态机功能核心代码 4.2 页面功能函数 4.3 源代码文件 5 功能测试 5.1…

基于多域名,通过云运营商弹性负载,Nginx配置等基于的多租户系统部署

已经开发好久的系统&#xff0c;因为业务上没有需求&#xff0c;没有做上线部署&#xff0c;此系统为多租户系统&#xff0c;原来设计是通过租户码参数来识别的&#xff0c;每个租户访问&#xff0c;需要传自己的码过来&#xff0c;才能确定是哪个租户登录系统&#xff0c; 今…

nacos和eureka的区别详细讲解

​ 大家好&#xff0c;我是程序员小羊&#xff01; 前言&#xff1a; Nacos 和 Eureka 是两种服务注册与发现的组件&#xff0c;它们在微服务架构中扮演重要角色。两者虽然都是为了解决服务发现的问题&#xff0c;但在功能特性、架构、设计理念等方面有很多不同。以下是详细的…

C++——map和set的使用以及map系列

目录 map和set的使用 1. 序列式容器和关联式容器 2. set系列的使⽤ 2.1 set和multiset参考⽂档 2.2 set类的介绍 2.3 set的构造和迭代器 2.4 set的增删查 set的增删查关注以下⼏个接⼝即可&#xff1a; 2.6 find和erase使⽤样例&#xff1a; lower_bound(); upper_bo…

如何选择OS--Linux不同Distribution的选用

写在前言&#xff1a; 刚写了Windows PC的不同editions的选用&#xff0c;趁热&#xff0c;把Linux不同的Distribution选用也介绍下&#xff0c;希望童鞋们可以了解-->理解-->深入了解-->深入理解--...以致于能掌握特定版本的Linux的使用甚者精通。……^.^…… so&a…

项目文件配置

1. 参数配置化 1.1 问题分析 1.2 问题解决 Value 注解通常用于外部配置的属性注入&#xff0c;具体用法为&#xff1a;Value("${配置文件中的key}") 2. yml配置文件 2.1 SpringBoot提供了多种属性配置方式 2.2 常见配置文件格式对比 2.3 yml 基本语法 大小写敏…

实时美颜的技术突破:视频美颜SDK与直播美颜工具的开发详解

如今&#xff0c;视频美颜SDK和直播美颜工具的开发&#xff0c;为各类应用提供了技术支持&#xff0c;使得美颜效果更加智能、高效。本文将详细探讨实时美颜的技术突破及其在视频美颜SDK和直播美颜工具中的应用与开发。 一、视频美颜SDK的核心技术 1.人脸检测与特征点识别 视…

HObject复制耗时试用

测试源码一 //第一步const int N 1000;HObject[] imgs new HObject[N];for (int i 0; i < N; i){HOperatorSet.GenImageConst(out imgs[i], "byte", 1024 i, 1024 i);}//第二步List<HObject> lists new List<HObject>();for(int i 0; i < …

OpenCV特征检测(3)计算图像中每个像素处的特征值和特征向量函数cornerEigenValsAndVecs()的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 计算图像块的特征值和特征向量用于角点检测。 对于每一个像素 p &#xff0c;函数 cornerEigenValsAndVecs 考虑一个 blockSize blockSize 的邻…