Structure-Aware Transformer for Graph Representation Learning

Structure-Aware Transformer for Graph Representation Learning(ICML22)

在这里插入图片描述

摘要

Transformer 架构最近在图表示学习中受到越来越多的关注,因为它通过避免严格的结构归纳偏差而仅通过位置编码对图结构进行编码,自然地克服了图神经网络(GNN)的一些限制。 在这里,我们表明由 Transformer 使用位置编码生成的节点表示不一定捕获它们之间的结构相似性。 为了解决这个问题,我们提出了 Structure-Aware Transformer,这是一类基于新的自注意力机制的简单而灵活的图形 Transformer。 这种新的自注意力通过在计算注意力之前提取以每个节点为根的子图表示,将结构信息合并到原始自注意力中。 我们提出了几种自动生成子图表示的方法,并从理论上证明所得到的表示至少与子图表示一样具有表现力。

介绍

Transformers (Vaswani et al., 2017),已被证明在自然语言理解 (Vaswani et al., 2017)、计算机视觉 (Dosovitskiy et al., 2020) 和生物序列建模 (Rives et al., 2020) 方面取得了成功。 2021),提供了解决这些问题的潜力。
Transformer 架构不仅仅在消息传递机制中聚合本地邻域信息,而是能够通过单个自注意力层捕获任何节点对之间的交互信息。 此外,与 GNN 相比,Transformer 避免在中间层引入任何结构归纳偏差,从而解决了 GNN 的表达能力限制。 相反,它将有关节点的结构或位置信息仅编码为输入节点特征,尽管限制了它可以从图结构中学习的信息量。 因此,将有关图结构的信息集成到 Transformer 架构中在图表示学习领域获得了越来越多的关注。 然而,大多数现有方法仅对节点之间的位置关系进行编码,而不是对结构关系进行显式编码。 因此,它们可能无法识别节点之间的结构相似性,并且可能无法对节点之间的结构交互进行建模。
在这里插入图片描述
上图中节点u,v的位置编码是相同的,因为这两个节点到相邻节点的最近距离都相同,可是他们的结构编码是不同的。

本文贡献

本文引入一种灵活的结构感知自注意力机制,该机制明确考虑图结构,从而捕获节点之间的结构交互。 由此产生的 Transformer 类,我们称之为结构感知 Transformer (SAT),可以提供图的结构感知表示,这与大多数现有的用于图结构数据的位置感知 Transformer 不同。

  1. 重新表述了 Vaswani 等人的自注意力机制。 (2017)作为内核平滑器,并通过提取以每个节点为中心的子图表示,扩展节点特征上的原始指数内核以也考虑局部结构。
  2. 提出了几种自动生成子图表示的方法,使生成的内核更平滑,能够同时捕获节点之间的结构和属性相似性。 理论上保证得到的表示至少与子图表示一样具有表达能力。

背景

在这里插入图片描述
输入交互图和用户和物品的嵌入表示X。

基于transformer的图

在这里插入图片描述
再经过残差链接和前馈网络
在这里插入图片描述

绝对编码
绝对编码是指在主Transformer模型之前,将图形的位置或结构表示添加或连接到输入节点特征,例如拉普拉斯位置编码(Dwivedi & Bresson,2021)或RWPE(Dwivedi等人,2022年)的报告。这些编码方法的主要缺点是,它们通常不提供节点与其邻域之间的结构相似性的度量

自注意作为核平滑

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

结构感知Transformer

1. 结构感知自注意力

采用上述的自注意作为核平滑,公式如下:
在这里插入图片描述
此处的注意力计算方式不再是单个节点的嵌入,而是这个节点构成的子图。
在这里插入图片描述
kgraph核函数是两个子图嵌入的点积,子图的抽取如下:

  1. k-subtree GNN extractor
    在这里插入图片描述

简而言之:将用户物品嵌入通过k层GNN最终获取节点u的嵌入,即时u的k-subtree(子图)

  1. k-subgraph GNN extractor
    在这里插入图片描述

简而言之:将节点u的所有邻居的k-subtree相加就是节点u的k-subgraph

结构感知Transformer

在这里插入图片描述

在这里插入图片描述

与绝对编码的组合

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/432689.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

分享课程:VUE数据可视化教程

在当今这个数据驱动的世界中,数据可视化已经成为了一种至关重要的工具,它帮助我们理解复杂的数据集,发现模式、趋势和异常。数据可视化不仅仅是将数字转换成图表,它是一种将数据转化为洞察力的艺术。 1.什么是数据可视化&#xf…

C语言指针系列1——初识指针

祛魅:其实指针这块儿并不难,有人说难只是因为基础到进阶没有处理好,大家要好好跟着一步一步学习,今天我们先来认识一下指针 指针定义:指针就是内存地址,指针变量是用来存放内存地址的变量,在同一…

Java.动态代理

1.创建一个接口 package Mydynamicproxy1;public interface Star {public abstract String sing(String str);public abstract void dance(String str); }2.创建一个BigStar类,要实现Star这个接口 package Mydynamicproxy1;public class BigStar implements Star{…

webpack4 target:“electron-renderer“ 打包加速配置

背景 昨天写得一篇Electron-vue asar 局部打包优化处理方案——绕开每次npm run build 超级慢的打包问题-CSDN博客文章浏览阅读754次,点赞19次,收藏11次。因为组员对于 Electron 打包过程存在比较迷糊的状态,且自己也没主动探索 Electron-vu…

tcp、udp通信调试工具Socket Tool

tcp、udp通信调试工具Socket Tool ]

线程池的执行流程和配置参数总结

一、线程池的执行流程总结 提交线程任务;如果线程池中存在空闲线程,则分配一个空闲线程给任务,执行线程任务;线程池中不存在空闲线程,则线程池会判断当前线程数是否超过核心线程数(corePoolSize&#xff09…

LeaferJS 动画、状态、过渡、游戏框架

LeaferJS 现阶段依然专注于绘图、交互和图形编辑场景。我们引入游戏场景,只是希望让 LeaferJS 被更多有需要的人看到,以充分发挥它的价值 LeaferJS 为你带来了全新的游戏、动画、状态和过渡功能,助你实现那些年少时的游戏梦想。我们引入了丰富…

【后端开发】JavaEE初阶——计算机是如何工作的???

前言: 🌟🌟本期讲解计算机工作原理,希望能帮到屏幕前的你。 🌈上期博客在这里:【MySQL】MySQL中JDBC编程——MySQL驱动包安装——(超详解) 🌈感兴趣的小伙伴看一看小编主…

Dependency Check:一款针对应用程序依赖组件的安全检测工具

关于Dependency Check Dependency-Check 是一款软件组合分析 (SCA) 工具,可尝试检测项目依赖项中包含的公开披露的漏洞。它通过确定给定依赖项是否存在通用平台枚举 (CPE) 标识符来实现此目的。如果找到,它…

Java线程的三大特性

原子性: 线程任务不可再分。 int i 1; i; 原子类 AtomicXXX 可见性: 线程之间的操作是互相不可见的。 volatile //线程A如果,flag为true,就运行打印语句 A: trueThread t1 new Thread(() -> {while (true) {if (flag) {System.out.println(&q…

【数据结构】AVL树相关知识详细梳理

1. AVL树的概念 AVL的全称是Adelson-Velsky-Landis,其名称来源于其发明者Adelson、Velsky和Landis, 是平衡二叉树搜索树。 它的出现是由于二叉搜索树虽可以缩短查找的效率,但如果数据有序或接近有序二叉搜索树将退化为单支树,查找…

【数据结构】栈和队列(Stack Queue)

引言 在对顺序表,链表有了充分的理解之后,现在让我们学习栈和队列!!! 【链表】 👈链表 【顺序表】👈顺序表 目录 💯栈 1.栈的概念及结构 2.栈的实现 ⭐初始化栈 ⭐入栈 ⭐…

Vue引入js脚本问题记录(附解决办法)

目录 一、需求 二、import引入问题记录 三、解决方式 一、需求 我想在我的Vue项目中引入jquery.js和bootstrap.js这种脚本文件,但发现不能单纯的import引入,问题如下。 二、import引入问题记录 我直接这么引入,发现控制台报错TypeError: …

POI操作EXCEL增加下拉框

文章目录 POI操作EXCEL增加下拉框 POI操作EXCEL增加下拉框 有时候通过excel将数据批量导入到系统,而业务操作人员对于一些列不想手动输入,而是采用下拉框的方式来进行选择 采用隐藏sheet页的方式来进行操作 String sheetName "supplier_hidden_s…

MedPrompt:基于提示工程的医学诊断准确率优化方法

Medprompt:基于提示工程的医学诊断准确率优化方法 秒懂大纲解法拆解MedPrompt 提示词全流程分析总结创意视角 论文:Can Generalist Foundation Models Outcompete Special-Purpose Tuning? Case Study in Medicine 秒懂大纲 ├── 1 研究背景【描述背…

vue.js——“微商城”后台管理系统

1. 需求背景: 先创建运行环境,“微商城”后台管理系统是一种后台管理系统平台,旨在提供一个便捷、安全和高效的管 理和操作各类数据的平台。系统将涵盖用户登录、商品管理、分类管理、新增分类和个人中 心等功能,以满足用户高效数据管理的各…

一窥AI大模型奥秘:技术前沿与产业应用双轮驱动

在科技日新月异的今天,人工智能(AI)正以前所未有的速度重塑着我们的生活与工作方式。其中,AI大模型作为技术的最前沿,不仅引领着技术体系的革新,更是产业实践与未来趋势的关键所在。 近期,有幸…

P335_0334韩顺平Java_零钱通介绍

目录 P335_0334韩顺平Java_零钱通介绍代码过程编程OOP(Object-Oriented Project) 参考资料 P335_0334韩顺平Java_零钱通介绍 先完成显示菜单,并可以选择。完成零钱通明细。完成收益入账。消费。退出。 PS:判断时尽量用不正确的条…

甘蔗茎节检测系统源码分享

甘蔗茎节检测检测系统源码分享 [一条龙教学YOLOV8标注好的数据集一键训练_70全套改进创新点发刊_Web前端展示] 1.研究背景与意义 项目参考AAAI Association for the Advancement of Artificial Intelligence 项目来源AACV Association for the Advancement of Computer Vis…

【小程序】微信小程序课程 -2 快速上手

目录 1、快速上手基本概念 1.1 小程序常用组件 1.2 tabbar配置 1.3 尺寸单位 1.4 样式 1.4.1 全局样式 app.wxss 1.4.2 局部样式 xx.wxss 2、首页案例 2.1 button组件使用 2.2 swiper swiper-item 2.3 tips效果 2.4 引入矢量图 2.5 flex(布局&#…