计算机毕业设计Hadoop+Spark知识图谱体育赛事推荐系统 体育赛事热度预测系统 体育赛事数据分析 体育赛事可视化 体育赛事大数据 大数据毕业设计

《Hadoop+Spark知识图谱体育赛事推荐系统》开题报告

一、研究背景及意义

随着互联网技术的迅猛发展和大数据时代的到来,体育赛事数据的数量呈爆炸式增长。用户面对海量的体育赛事信息,常常感到信息过载,难以快速找到感兴趣的赛事内容。如何高效地从海量数据中筛选出用户感兴趣的体育赛事,成为当前亟待解决的问题。传统的推荐系统由于计算量大、处理速度慢,难以应对大规模数据处理的挑战。Hadoop和Spark作为两种主流的大数据处理技术,因其高扩展性和高性能,被广泛应用于大数据处理领域。本研究旨在结合Hadoop和Spark两种技术,并引入知识图谱,构建一个高效的体育赛事推荐系统。该系统通过分析用户的兴趣和行为数据,结合多种推荐算法和知识图谱的语义关联,为用户提供个性化的体育赛事推荐服务,提高用户查找赛事的效率和满意度,同时也为赛事资源的优化配置提供有力支持。

二、研究目标

  1. 设计并实现一个基于Hadoop和Spark的分布式体育赛事推荐系统,该系统能够高效处理大规模赛事数据,并实时响应用户的推荐请求。
  2. 比较和选择最优的推荐算法,通过分析和比较多种推荐算法(如基于内容的推荐、协同过滤推荐、深度学习推荐等),找出最适合体育赛事推荐的算法或算法组合。
  3. 验证推荐系统的性能和准确性,通过实验验证所设计的推荐系统在推荐准确率、召回率、F1分数等指标上的表现,确保其在实际应用中的有效性和可靠性。

三、研究内容

1. 系统架构设计

系统架构将包括数据预处理、数据存储、模型训练、推荐算法实现及用户交互等模块。

  • 数据预处理:使用Hadoop进行数据的清洗、转换和存储。
  • 数据存储:利用HDFS进行数据存储,并利用Hive进行数据仓库的建设。
  • 模型训练:利用Spark进行高效的数据分析和模型训练。
  • 推荐算法实现:结合基于内容的推荐、协同过滤推荐、深度学习推荐及知识图谱的语义推荐算法。
  • 用户交互:设计用户友好的界面,提供赛事推荐和查询功能。

2. 关键技术实现

  • 基于内容的推荐:通过分析赛事的内容特征(如球队、球员、比赛类型等)进行推荐。
  • 协同过滤推荐:利用用户的历史行为数据,找到兴趣相似的用户群体进行推荐。
  • 深度学习推荐:采用深度学习模型(如LSTM、CNN等)挖掘赛事数据中的潜在关系进行推荐。
  • 知识图谱推荐:利用知识图谱中的语义关系,进行赛事之间的关联推荐。

3. 数据采集与处理

使用Selenium等Python爬虫工具采集体育赛事数据,存储到CSV文件或MySQL数据库中,并上传到HDFS分布式文件系统上。利用Hive进行数据仓库建模,并进行初步的数据处理和分析。

4. 实验验证与结果分析

设计实验方案,收集用户行为数据和赛事数据,进行系统测试和验证。评估系统的推荐准确率、召回率、F1分数等关键指标,确保系统性能达到预期目标。

四、研究计划

第一阶段(1-2个月):文献综述和需求分析

  • 查阅相关文献,了解当前体育赛事推荐系统的研究现状和发展趋势,为系统设计提供理论基础和参考。
  • 确定研究方案和技术选型,完成开题报告。

第二阶段(3-4个月):系统设计和实现

  • 根据需求分析和技术选型,设计系统架构和模块划分。
  • 完成代码编写和调试工作,实现系统的各个功能模块。

第三阶段(5-6个月):实验验证和结果分析

  • 设计实验方案,收集用户行为数据和赛事数据。
  • 进行系统测试和验证,评估系统的推荐准确率、召回率、F1分数等关键指标。
  • 撰写实验报告,总结实验结果。

第四阶段(7-8个月):论文撰写和总结

  • 整理研究成果,撰写毕业论文。
  • 进行答辩准备,完成答辩工作。

五、预期成果和创新点

预期成果

  1. 设计和实现一个基于Hadoop和Spark的分布式体育赛事推荐系统,提高推荐系统的性能和用户体验。
  2. 通过实验验证所设计的推荐系统的性能和准确性,为后续相关研究提供参考。
  3. 为体育赛事机构和用户提供一种高效、实用的赛事推荐方法,提高赛事资源的利用效率和用户满意度。

创新点

  1. 结合Hadoop和Spark两种大数据处理技术:设计并实现一个分布式、可扩展的体育赛事推荐系统,提高系统的处理能力和响应速度。
  2. 引入知识图谱技术:通过语义关联提高推荐的准确性和个性化程度。
  3. 多种推荐算法的比较与选择:通过实验验证多种推荐算法在体育赛事推荐中的效果,选择最适合的算法或算法组合。

六、参考文献

由于篇幅限制,此处仅列出部分参考文献的示例,详细文献列表将在后续研究中进一步完善。

  1. 磨春妗, 黎飞, 谢燕芳, 程登, 张森. 一种泊车服务推荐系统的设计[J]. 现代工业经济和信息化, 2022年03期.
  2. 李方园. 基于个性化需求的图书馆书籍智能推荐系统的设计与实现研究[J]. 信息记录材料, 2020年12期.
  3. 孔令圆, 彭琰, 郑汀华, 马华. 面向个性化学习的慕课资源推荐系统开发[J]. 计算机时代, 2021年07期.

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/432807.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C语言中的一些小知识(三)

一、你了解printf()吗? 你知道下面代码的输出结果吗? int a123; printf("%2d \n",a); printf() 函数是 C 语言中用于格式化输出的标准函数,它允许你将数据以特定的格式输出到标准输出设备(通常是屏幕)。p…

uniapp 知识点

自定义导航 在page.json navigationstyle":"custom"navigateTo传参 页面传参只能onLoad(option)里面拿 px和upx的关系 在750设计图中,1px1upx 路由 navigateBack返回上一页 重定向 其实就是把当前页面干掉了 公共组件和页面共同点 computed,watc…

vue初学随笔

Vue基础 Vue基本概念 Vue是什么 Vue是一个渐进式的JavaScript框架,它基于标准 HTML、CSS 和 JavaScript 构建,并提供了一套声明式的、组件化的编程模型,帮助你高效地开发用户界面。 渐进式:各个特性可以根据项目需要逐渐引入和…

认知杂谈84《菜鸟的自我修炼:知易行难与行难知易》

内容摘要: 理解与行动之间的差距是日常生活的常见挑战。"知易行难"体现在理解简单但执行困难,例如知道蔬菜有益但难以坚持食用。而"行难知易"则是开始时困难但后来容易的任务,如学习骑自行车。 这种差异源于心理惰性和习…

Oracle RMAN 无敌备份脚本

1 说明 上一篇文章:Oracle逻辑备份脚本,介绍了如何部署Oracle数据库的逻辑备份脚本,在数据迁移场景下十分好用,但是作为备份来说有点牵强。仅仅有逻辑备份时,当故障发生后,逻辑备份恢复只能恢复到某一时刻…

OpenHarmony(鸿蒙南向)——平台驱动指南【MIPI CSI】

往期知识点记录: 鸿蒙(HarmonyOS)应用层开发(北向)知识点汇总 鸿蒙(OpenHarmony)南向开发保姆级知识点汇总~ 持续更新中…… 概述 功能简介 CSI(Camera Serial Interface&#xf…

JavaScript 学习

一、输出 为方便调试可以输出内容&#xff0c;但是用户是看不到的。要在开发者模式中看。 console . log ( "Hello" )&#xff1b; 二、外部文件引用 可以直接在html中写JS <head> <meta charset"utf-8"> <script> console.log("he…

Java面试题之JVM20问

1、说说 JVM 内存区域 这张图就是一个 JVM 运行时数据图&#xff0c;「紫色区域代表是线程共享的区域」&#xff0c;JAVA 程序在运行的过程中会把他管理的内存划分为若干个不同的数据区域&#xff0c;「每一块儿的数据区域所负责的功能都是不同的&#xff0c;他们也有不同的创建…

MAGICORE:基于多代理迭代的粗到细精炼框架,提升大语言模型推理质量

大语言模型(LLM)的推理能力可以通过测试时聚合策略来改进,即为每个问题生成多个样本并对它们进行聚合以找到更好的答案。这些方法往往会达到饱和点,超过这个点后额外的样本不会带来更多收益。精炼(refinement)提供了另一种选择,它使用模型生成的反馈不仅采样更多解决方案,还提高…

使用离火插件yoloV8数据标注,模型训练

1. 启动 2.相关配置 2.1 data.yaml path: D:/yolo-tool/yaunshen-yolov8/YOLOv8ys/YOLOv8-CUDA10.2/1/datasets/ceshi001 train: images val: images names: [蔡徐坤,篮球] 2.2 cfg.yaml # Ultralytics YOLOv8, GPL-3.0 license # Default training settings and hyp…

解读 Story Protocol:IP 与区块链的潜力与障碍

撰文&#xff1a;100y.eth 编译&#xff1a;J1N&#xff0c;Techub News 8 月&#xff0c;据 The Block 报道&#xff0c;专注于知识产权&#xff08;IP&#xff09;的区块链 Story 宣布完成 a16z Crypto 领投 8000 万美元 B 轮融资&#xff0c;参投方包括 Polychain Capital&…

AI搜索软件哪个好,AI搜索引擎工具分享

随着AI技术的发展&#xff0c;AI搜索引擎工具正逐渐成为我们信息获取的重要方法。下面小编就来和大家分享一些好用的AI搜索引擎软件&#xff0c;感兴趣的同学可以逐个使用体验一下。因为每个AI搜索引擎工具不同&#xff0c;建议大家搜索的时候可以多个工具搜索&#xff0c;然后…

Java笔试面试题AI答之设计模式(1)

文章目录 1. 简述什么是设计模式 &#xff1f;2. 叙述常见Java设计模式分类 &#xff1f;3. Java 设计模式的六大原则 &#xff1f;4. 简述对 MVC 的理解&#xff0c; MVC 有什么优缺点&#xff1f;MVC 的三个核心部分&#xff1a;MVC 的优点&#xff1a;MVC 的缺点&#xff1a…

已存在的Python项目使用依赖管理工具UV

1. 文档 uv文档 2. 如何转换 初始化 uv initrequirements.txt转换成pyproject.toml uv add $(cat requirements.txt)删除requirements.txt 如果更新pyproject.toml之后&#xff0c;使用命令 uv sync替换项目环境 如果有库没有加入依赖&#xff0c;自己手动加一下&am…

助力降本增效,ByteHouse打造新一代云原生数据仓库

随着数据量的爆炸式增长、企业上云速度加快以及数据实时性需求加强&#xff0c;云原生数仓市场迎来了快速发展机遇。 据 IDC、Gartner 研究机构数据显示&#xff0c;到 2025 年&#xff0c;企业 50% 数据预计为云存储&#xff0c;75% 数据库都将运行在云上&#xff0c;全球数据…

【Kubernetes】日志平台EFK+Logstash+Kafka【实战】

一&#xff0c;环境准备 &#xff08;1&#xff09;下载镜像包&#xff08;共3个&#xff09;&#xff1a; elasticsearch-7-12-1.tar.gz fluentd-containerd.tar.gz kibana-7-12-1.tar.gz &#xff08;2&#xff09;在node节点导入镜像&#xff1a; ctr -nk8s.io images i…

webpack使用

一、简介 概述 本次使用webpack4进行构建打包 二、webpack 安装webpack、webpack-cli npm install webpack4.2.0 webpack-cli4.2.0 -D 三、loader 加载器概述 raw-loader&#xff1a;加载文件原始内容&#xff08;utf-8&#xff09; file-loader&#xff1a;把文件输出…

CentOS 7 中安装 docker 环境

作者&#xff1a;程序那点事儿 日期&#xff1a;2023/02/15 02:31 官网地址 官网文档 docker三种网络模式 Docker CE 支持 64 位版本 CentOS 7&#xff0c;并且要求内核版本不低于 3.10&#xff0c; CentOS 7 满足最低内核的要求。 Docker 分为 CE 和 EE 两大版本。CE 即社区…

蓝桥杯1.小蓝的漆房

样例输入 2 5 2 1 1 2 2 1 6 2 1 2 2 3 3 3样例输出 1 2 import math import os import sys tint(input())#执行的次数 for j in range(t):n,kmap(int,input().split())#n为房间数 k为一次能涂的个数alist(map(int,input().split()))#以列表的形式存放房间的颜色maxvaluemath…

81、Python之鸭子类型:从魔法函数看对象的字符串呈现

引言 前面已经介绍了鸭子类型的概念&#xff0c;以及Python中支撑鸭子类型理念的“魔法函数”的体系。Python中的魔法函数分为几大类&#xff0c;本文我们首先从最简单的自定义类型的字符串呈现来切入&#xff0c;逐步理解并掌握Python中的魔法函数的完整架构。 本文的主要内…