遗传算法与深度学习实战——使用进化策略实现EvoLisa

遗传算法与深度学习实战——使用进化策略实现EvoLisa

    • 0. 前言
    • 1. 使用进化策略实现 EvoLisa
    • 2. 运行结果
    • 相关链接

0. 前言

我们已经学习了进化策略 (Evolutionary Strategies, ES) 的基本原理,并且尝试使用 ES 解决了函数逼近问题。函数逼近是一个很好的基准问题,但为了充分展示 ES 的作用,本节中,我们将重新思考 EvoLisa 问题,采用 ES 作为解决策略,以将 ES 和常规遗传算法进行对比。

1. 使用进化策略实现 EvoLisa

接下来,使用进化策略 (Evolutionary Strategies, ES) 通过复现 EvoLisa 项目重建《蒙娜丽莎》图像。

import random
import numpy as npfrom deap import algorithms
from deap import base
from deap import creator
from deap import toolsimport os
import cv2
import urllib.request
import matplotlib.pyplot as plt
from IPython.display import clear_outputdef load_target_image(image_url, color=True, size=None):image_path = "target_image"    urllib.request.urlretrieve(image_url,image_path)if color:target = cv2.imread(image_path, cv2.IMREAD_COLOR)# Switch from bgr to rgbtarget = cv2.cvtColor(target, cv2.COLOR_BGR2RGB)else:target = cv2.imread(image_path, cv2.IMREAD_GRAYSCALE)if size:# Only resizes image if it is needed!target = cv2.resize(src=target, dsize=size, interpolation=cv2.INTER_AREA)return targetdef show_image(img_arr):    plt.figure(figsize=(10,10))plt.axis("off")plt.imshow(img_arr/255)plt.show()def show_results(history, img_arr, org):plt.figure(figsize=(10,10))plt.tight_layout()plt.subplot(221)plt.axis("off")plt.imshow(img_arr/255)plt.title('best of generation')plt.subplot(222)plt.axis("off")plt.imshow(org/255)plt.title('target image')plt.subplot(212)lh = len(history)plt.xlim([lh-50, lh])plt.plot(history)plt.title('min fitness by generation') plt.show()polygons = 255 #@param {type:"slider", min:10, max:1000, step:1}
size = 32 #@param {type:"slider", min:16, max:1000, step:2}
target_image = "Mona Lisa" #@param ["Mona Lisa", "Stop Sign", "Landscape", "Celebrity", "Art", "Abstract"]
report_every_gen = 10 #@param {type:"slider", min:1, max:100, step:1}
number_generations = 10000 #@param {type:"slider", min:100, max:10000, step:10}POLYGONS = polygons
SIZE = (size, size)target_urls = { "Mona Lisa" : 'https://upload.wikimedia.org/wikipedia/commons/b/b7/Mona_Lisa_face_800x800px.jpg',"Stop Sign" : 'https://images.uline.com/is/image//content/dam/images/H/H2500/H-2381.jpg',"Landscape" : 'https://www.adorama.com/alc/wp-content/uploads/2018/11/landscape-photography-tips-yosemite-valley-feature.jpg',"Celebrity" : 'https://s.abcnews.com/images/Entertainment/WireAP_91d6741d1954459f9993bd7a2f62b6bb_16x9_992.jpg',"Art" : "http://www.indianruminations.com/wp-content/uploads/what-is-modern-art-definition-2.jpg","Abstract" : "https://scx2.b-cdn.net/gfx/news/2020/abstractart.jpg"}target_image_url = target_urls[target_image]
target = load_target_image(target_image_url, size=SIZE)
show_image(target)
print(target.shape)#polygon genes
GENE_LENGTH = 10
NUM_GENES = POLYGONS * GENE_LENGTH#create a sample invidiual
individual = np.random.uniform(0,1,NUM_GENES)
print(individual)
# [0.62249533 0.44090963 0.14777921 ... 0.57283261 0.9325435  0.25907929]def extract_genes(genes, length): for i in range(0, len(genes), length): yield genes[i:i + length]def render_individual(individual):if isinstance(individual,list):individual = np.array(individual)canvas = np.zeros(SIZE+(3,))radius_avg = (SIZE[0] + SIZE[1]) / 2 / 6genes = extract_genes(individual, GENE_LENGTH)for gene in genes:try:overlay = canvas.copy()# alternative drawing methods circle or rectangle# circle brush uses a GENE_LENGTH of 7# center = (0, 1) [2]# radius = (2) [3]# color = (3,4,5) [6]# alpha = (6) [7]#cv2.circle(#    overlay,#    center=(int(gene[1] * SIZE[1]), int(gene[0] * SIZE[0])),#    radius=int(gene[2] * radius_avg),#    color=color,#    thickness=-1,#)# rectangle brush uses GENE_LENGTH = 8# top left = (0, 1) [2]# btm right = (2, 3) [4]# color = (4, 5, 6) [7]# alpha = (7) [8]#cv2.rectangle(overlay, (x1, y1), (x2, y2), color, -1)    # polyline brush uses GENE_LENGTH = 10# pts = (0, 1), (2, 3), (4, 5) [6]      # color = (6, 7, 8) [9]# alpha = (9) [10]x1 = int(gene[0] * SIZE[0])x2 = int(gene[2] * SIZE[0])x3 = int(gene[4] * SIZE[0])y1 = int(gene[1] * SIZE[1])y2 = int(gene[3] * SIZE[1])y3 = int(gene[5] * SIZE[1])color = (gene[6:-1] * 255).astype(int).tolist() pts = np.array([[x1,y1],[x2,y2],[x3,y3]], np.int32)  pts = pts.reshape((-1, 1, 2))pts = np.array([[x1,y1],[x2,y2],[x3,y3]])cv2.fillPoly(overlay, [pts], color)alpha = gene[-1]canvas = cv2.addWeighted(overlay, alpha, canvas, 1 - alpha, 0)  except:passreturn canvasrender = render_individual(individual)
show_image(render)from skimage.metrics import structural_similarity as ss
#@title Fitness Function
def fitness_mse(render):"""Calculates Mean Square Error Fitness for a render"""error = (np.square(render - target)).mean(axis=None)return errordef fitness_ss(render):"""Calculated Structural Similiarity Fitness"""index = ss(render, target, multichannel=True)return 1-indexprint(fitness_mse(render))IND_SIZE = NUM_GENES
MIN_VALUE = -1
MAX_VALUE = 1
MIN_STRATEGY = 0.5
MAX_STRATEGY = 5CXPB = .6
MUTPB = .3creator.create("FitnessMin", base.Fitness, weights=(-1.0,))
creator.create("Individual", list, typecode="d", fitness=creator.FitnessMin, strategy=None)
creator.create("Strategy", list, typecode="d")def generateES(icls, scls, size, imin, imax, smin, smax):  ind = icls(random.uniform(imin, imax) for _ in range(size))  ind.strategy = scls(random.uniform(smin, smax) for _ in range(size))  return inddef checkStrategy(minstrategy):def decorator(func):def wrappper(*args, **kargs):children = func(*args, **kargs)for child in children:for i, s in enumerate(child.strategy):if s < minstrategy:child.strategy[i] = minstrategyreturn childrenreturn wrappper
return decoratordef uniform(low, up, size=None):try:return [random.uniform(a, b) for a, b in zip(low, up)]except TypeError:return [random.uniform(a, b) for a, b in zip([low] * size, [up] * size)]def clamp(low, up, n):return max(low, min(n, up))def custom_blend(ind1, ind2, alpha):    for i, (x1, s1, x2, s2) in enumerate(zip(ind1, ind1.strategy,ind2, ind2.strategy)):# Blend the valuesgamma = (1. + 2. * alpha) * random.random() - alphaind1[i] = clamp(0.0, 1.0, (1. - gamma) * x1 + gamma * x2)ind2[i] = clamp(0.0, 1.0, gamma * x1 + (1. - gamma) * x2)# Blend the strategiesgamma = (1. + 2. * alpha) * random.random() - alphaind1.strategy[i] = (1. - gamma) * s1 + gamma * s2ind2.strategy[i] = gamma * s1 + (1. - gamma) * s2return ind1, ind2toolbox = base.Toolbox()
toolbox.register("individual", generateES, creator.Individual, creator.Strategy,IND_SIZE, MIN_VALUE, MAX_VALUE, MIN_STRATEGY, MAX_STRATEGY)
toolbox.register("population", tools.initRepeat, list, toolbox.individual)
toolbox.register("mate", custom_blend, alpha=0.5)
toolbox.register("mutate", tools.mutESLogNormal, c=1.0, indpb=0.06)
toolbox.register("select", tools.selTournament, tournsize=5)toolbox.decorate("mate", checkStrategy(MIN_STRATEGY))
toolbox.decorate("mutate", checkStrategy(MIN_STRATEGY))def evaluate(individual):render = render_individual(individual)print('.', end='')
return fitness_mse(render),  #using MSE for fitness#toolbox.register("mutate", tools.mutGaussian, mu=0.0, sigma=.1, indpb=.25)
toolbox.register("evaluate", evaluate)NGEN = number_generations
RGEN = report_every_gen
CXPB = .6
MUTPB = .3
MU, LAMBDA = 100, 250
pop = toolbox.population(n=MU)
hof = tools.HallOfFame(1)
stats = tools.Statistics(lambda ind: ind.fitness.values)
stats.register("avg", np.mean)
stats.register("std", np.std)
stats.register("min", np.min)
stats.register("max", np.max) best = None
history = []for g in range(NGEN):pop, logbook = algorithms.eaMuCommaLambda(pop, toolbox, mu=MU, lambda_=LAMBDA, cxpb=CXPB, mutpb=MUTPB, ngen=RGEN, stats=stats, halloffame=hof, verbose=False)best = hof[0]#pop, logbook = algorithms.eaSimple(pop, toolbox, #         cxpb=CXPB, mutpb=MUTPB, ngen=100, stats=stats, halloffame=hof, verbose=False)#best = hof[0] clear_output()  render = render_individual(best) history.extend([clamp(0.0, 5000.0, l["min"]) for l in logbook])show_results(history, render, target)  print(f"Gen ({(g+1)*RGEN}) : best fitness = {fitness_mse(render)}")

2. 运行结果

下图显示了代码的运行结果,作为对比,图中还显示了使用经典遗传算法生成的结果。

代码运行结果

相关链接

遗传算法与深度学习实战(1)——进化深度学习
遗传算法与深度学习实战(4)——遗传算法(Genetic Algorithm)详解与实现
遗传算法与深度学习实战(5)——遗传算法中常用遗传算子
遗传算法与深度学习实战(6)——遗传算法框架DEAP
遗传算法与深度学习实战(7)——DEAP框架初体验
遗传算法与深度学习实战(10)——使用遗传算法重建图像
遗传算法与深度学习实战(14)——进化策略详解与实现

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/434785.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Git】克隆主项目,并同时克隆所有子模块

子模块 带有箭头的文件夹&#xff08;relaxed_ik_core&#xff09;通常表示这是一个 Git 子模块&#xff08;submodule&#xff09;。Git 子模块是一种嵌入式的 Git 仓库&#xff0c;它允许你在一个仓库中引用其他的 Git 仓库。换句话说&#xff0c;relaxed_ik_core 不是这个项…

基于python+spark的外卖餐饮数据分析系统设计与实现(含论文)-Spark毕业设计选题推荐

博主介绍&#xff1a; 大家好&#xff0c;本人精通Java、Python、C#、C、C编程语言&#xff0c;同时也熟练掌握微信小程序、Php和Android等技术&#xff0c;能够为大家提供全方位的技术支持和交流。 我有丰富的成品Java、Python、C#毕设项目经验&#xff0c;能够为学生提供各类…

YOLOv8 Windows c++推理

#添加一个**yolov8\_。onx **和/或**yolov5\_。Onnx **模型(s)到ultralytics文件夹。 #编辑**main.cpp**来改变**projectBasePath**来匹配你的用户。#请注意&#xff0c;默认情况下&#xff0c;CMake文件将尝试导入CUDA库以与opencv dnn (cuDNN) GPU推理一起使用。 #如果你的Op…

在matlab中Application Compiler后的软件无法打开

&#x1f3c6;本文收录于《全栈Bug调优(实战版)》专栏&#xff0c;主要记录项目实战过程中所遇到的Bug或因后果及提供真实有效的解决方案&#xff0c;希望能够助你一臂之力&#xff0c;帮你早日登顶实现财富自由&#x1f680;&#xff1b;同时&#xff0c;欢迎大家关注&&am…

怎么给儿童掏耳朵比较安全?5款安全的儿童掏耳勺!

儿童的耳部娇嫩&#xff0c;在为其掏耳朵时需格外谨慎。市面上的传统耳勺存在诸多风险&#xff0c;稍不注意会刮伤儿童的耳道肌肤。在此建议家长们为孩子选用儿童专用可视挖耳勺。这种挖耳勺能够让家长清晰地看到孩子耳道内的情况&#xff0c;从而更加安全、精准地为孩子清理耳…

React 启动时webpack版本冲突报错

报错信息&#xff1a; 解决办法&#xff1a; 找到全局webpack的安装路径并cmd 删除全局webpack 安装所需要的版本

Docker Desktop 安装Centos 7.9 使用yum install不可用问题

安装centos镜像并run之后&#xff0c;使用yum install 命令安装出现如下错误&#xff0c;可使用此命令替换mirror。 报错信息&#xff1a; Could not retrieve mirrorlist http://mirrorlist.centos.org/?release7&archaarch64&repoos&infracontainer error was…

2015年国赛高教杯数学建模B题互联网+时代的出租车资源配置解题全过程文档及程序

2015年国赛高教杯数学建模 B题 互联网时代的出租车资源配置 出租车是市民出行的重要交通工具之一&#xff0c;“打车难”是人们关注的一个社会热点问题。随着“互联网”时代的到来&#xff0c;有多家公司依托移动互联网建立了打车软件服务平台&#xff0c;实现了乘客与出租车司…

Spring-bean实例化的方式

前言 什么是bean的实例化&#xff1f; 通常我们使用spring管理java的对象&#xff0c;一般称这个java对象为一个实例化的bean。bean的实例化方式&#xff0c;实际上就是spring创建并管理java对象实例的方式 bean的实例化方式 在Java和Spring框架的上下文中&#xff0c;Bean的实…

医院安保巡更管理应用二维码无纸化巡更方式

医院安保巡查是维护医院秩序安全的重中之重&#xff0c;在确保医院的安全运行&#xff0c;预防和减少安全事故的发生。通过定期的安全巡查&#xff0c;可以及时发现和解决潜在的安全隐患&#xff0c;保障医护人员和患者的安全。例如&#xff1a;‌安全疏散通道、‌监控设备‌、…

ACDsee简体中文版网盘资源下载(含教程)

如大家所熟悉的&#xff0c;ACDSee是一款集看图、编辑和管理于一体的软件&#xff0c;其凭借着打开速度快、管理功能强、操作界面友好简单等等优势&#xff0c;广受用户的喜欢。目前最新为ACDSee 2024版本。 一、文件管理 ACDSee数据库在文件管理方面表现出色。它可以帮助用户…

四气两尘监测站中空气质量传感器推荐

在快速发展的工业化进程中&#xff0c;空气质量已成为衡量一个地区环境健康水平的重要指标。随着公众环保意识的增强&#xff0c;对空气质量的关注不再局限于直观的蓝天白云&#xff0c;而是深入到更为细微、复杂的污染物层面&#xff0c;其中&#xff0c;“四气两尘”便是这一…

操作平台使用中应每月不少于几次定期检查?

在当今数字化时代&#xff0c;操作平台作为企业与个人日常运营的核心载体&#xff0c;其稳定性和安全性直接关系到业务的高效运行与数据的严密保护。因此&#xff0c;定期进行操作平台的检查与维护&#xff0c;成为了不可忽视的重要环节。特别是&#xff0c;确保每月进行不少于…

JAVA的版本

Java的版本开始还正常&#xff1a;1.0 ->1.1 顺序增加&#xff0c;到了2004年&#xff0c;不知什么原因1.5又有了新的平行名字5&#xff0c;这样Java 1.6对应Java6&#xff0c;一直到Java1.8 对应 Java8&#xff0c;然后到在2017年彻底没了Java1.9,只有Java9了。好吧这可以忍…

【初阶数据结构】排序——选择排序

目录 前言选择排序堆排序 前言 对于常见的排序算法有以下几种&#xff1a; 下面这节我们来看选择排序算法。 选择排序 基本思想&#xff1a;   每一次从待排序的数据元素中遍历选出最大&#xff08;或最小&#xff09;的元素放在序列的起始位置&#xff0c;直到全部待排序…

828华为云征文 | 使用 Memtester 对华为云 X 实例进行内存性能测试

目录 前言 1 华为云X实例介绍 2 Memtester 简介 2.1 什么是Memtester 2.2 安装 Memtester 3 测试方案设计 3.1 测试目标 3.2 测试环境 3.3 测试命令 4 测试数据及性能分析 4.1 带宽测试结果 4.2 延迟测试结果 5 性能瓶颈与优化建议 6 总结 前言 在云计算的应用场…

从0学习React(2)

经过上一篇的文章&#xff0c;对index.tsx文件的每行代码进行了一个简单的分析之后&#xff0c;我大概对React有了一个简单的了解。虽然也是一知半解&#xff0c;但是起码在心里已经对React有了一个基本的概念。这篇文章&#xff0c;我就讲一下关于React中index.tsx的大致框架。…

以太网交换安全:端口安全

一、端口安全介绍 端口安全是一种网络设备防护措施&#xff0c;通过将接口学习到的动态MAC地址转换为安全MAC地址&#xff08;包括安全动态MAC和Sticky MAC&#xff09;&#xff0c;阻止除安全MAC和静态MAC之外的主机通过本接口和设备通信&#xff0c;从而增强设备的安全性。以…

【运维资料】系统运维管理方案(Doc原件2024)

1 编制目的 2 系统运行维护 2.1 系统运维内容 2.2 日常运行维护方案 2.2.1 日常巡检 2.2.2 状态监控 2.2.3 系统优化 2.2.4 软件系统问题处理及升级 2.2.5 系统数据库管理维护 2.2.6 灾难恢复 2.3 应急运行维护方案 2.3.1 启动应急流程 2.3.2 成立应急小组 2.3.3 应急处理过程 …

产品管理 - 互联网产品(3) : 迭代管理

1、需求文档的每一个迭代版本号&#xff0c;都需要标识出来 根据软件文档的配置标准&#xff1a; 上线时&#xff1a;X.Y 修改时&#xff1a;X.YZ 草稿时&#xff1a;0.XY 2、每一个项目干系人&#xff0c;都可以访问到最新版本的需求。 所有角色必须要有统的一认知。这是需求…