国庆偷偷卷!小众降维!POD-Transformer多变量回归预测(Matlab)

目录

      • 效果一览
      • 基本介绍
      • 程序设计
      • 参考资料

效果一览

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现POD-Transformer多变量回归预测,本征正交分解数据降维融合Transformer多变量回归预测,使用SVD进行POD分解(本征正交分解);
2.运行环境Matlab2023b;
3.输入多个特征,输出单个变量,多变量回归预测;
4.data为数据集,excel数据,前多列输入,最后1列输出,主程序运行即可,所有文件放在一个文件夹;
5.命令窗口输出R2、MSE、MAE、MAPE和MBE多指标评价;
本征正交分解,Proper orthogonal decomposition 缩写为POD,是一种用于提取离散数据特征信息的数学方法。POD 方法的目的是把多维随机过程进行低维近似描述并提取复杂随机过程的本质特征。其基本思想是将随机量分解为由其自身特征所确定的一组基函数来表示,基函数的确定原则为在每一次分解的过程中使得最低阶的模式上含能最多。

在这里插入图片描述
在这里插入图片描述

程序设计

  • 完整程序和数据获取方式:私信博主回复POD-Transformer多变量回归预测(Matlab)

%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据
result = xlsread('data.xlsx');%%  数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);%%  数据平铺
P_train =  double(reshape(P_train, f_, 1, 1, M));
P_test  =  double(reshape(P_test , f_, 1, 1, N));t_train = t_train';
t_test  = t_test' ;%%  数据格式转换
for i = 1 : Mp_train{i, 1} = P_train(:, :, 1, i);
endfor i = 1 : Np_test{i, 1}  = P_test( :, :, 1, i);
end

参考资料

[1] http://t.csdn.cn/pCWSp
[2] https://download.csdn.net/download/kjm13182345320/87568090?spm=1001.2014.3001.5501
[3] https://blog.csdn.net/kjm13182345320/article/details/129433463?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/435967.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MobaXterm基本使用 -- 服务器状态、批量操作、显示/切换中文字体、修复zsh按键失灵

监控服务器资源 参考网址:https://www.cnblogs.com/144823836yj/p/12126314.html 显示效果 MobaXterm提供有这项功能,在会话窗口底部,显示服务器资源使用情况 如内存、CPU、网速、磁盘使用等: (完整窗口&#xff0…

BEVDet---论文+源码解读

论文链接:https://arxiv.org/pdf/2112.11790.pdf; Github仓库源码:https://github.com/HuangJunJie2017/BEVDet; BEVDet这篇论文主要是提出了一种基于BEV空间下的3D目标检测范式,BEVDet算法模型的整体流程图如下&…

汽车总线之---- LIN总线

Introduction LIN总线的简介,对于传统的这种点对点的连接方式,我们可以看到ECU相关的传感器和执行器是直接连接到ECU的,当传感器和执行器的数量较少时,这样的连接方式是能满足要求的,但是随着汽车电控功能数量的不断增…

基于单片机的指纹打卡系统

目录 一、主要功能 二、硬件资源 三、程序编程 四、实现现象 一、主要功能 基于STC89C52RC,采用两个按键替代指纹,一个按键按下,LCD12864显示比对成功,则 采用ULN2003驱动步进电机转动,表示开门,另一个…

RTMP、RTSP直播播放器的低延迟设计探讨

技术背景 没有多少开发者会相信RTMP或RTSP播放器,延迟会做到150-300ms内,除非测试过大牛直播SDK的,以Android平台启动轻量级RTSP服务和推送RTMP,然后Windows分别播放RTSP和RTMP为例,整体延迟如下: 大牛直播…

深度学习后门攻击分析与实现(二)

前言 在本系列的第一部分中,我们已经掌握了深度学习中的后门攻击的特点以及基础的攻击方式,现在我们在第二部分中首先来学习深度学习后门攻击在传统网络空间安全中的应用。然后再来分析与实现一些颇具特点的深度学习后门攻击方式。 深度学习与网络空间…

探索甘肃非遗:Spring Boot网站开发案例

1 绪论 1.1 研究背景 当前社会各行业领域竞争压力非常大,随着当前时代的信息化,科学化发展,让社会各行业领域都争相使用新的信息技术,对行业内的各种相关数据进行科学化,规范化管理。这样的大环境让那些止步不前&#…

SpringBoot框架下体育馆管理系统的构建

1引言 1.1课题背景 当今时代是飞速发展的信息时代。在各行各业中离不开信息处理,这正是计算机被广泛应用于信息管理系统的环境。计算机的最大好处在于利用它能够进行信息管理。使用计算机进行信息控制,不仅提高了工作效率,而且大大的提高了其…

工具介绍---效率高+实用

Visual Studio Code (VS Code) 功能特点: 智能代码提示:内置的智能代码提示功能可以自动完成函数、变量等的输入,提高代码编写速度。插件丰富:支持成千上万的扩展插件,例如代码片段、主题、Linting等,能够…

通信工程学习:什么是CSMA/CD载波监听多路访问/冲突检测

CSMA/CD:载波监听多路访问/冲突检测 CSMA/CD(Carrier Sense Multiple Access/Collision Detect),即载波监听多路访问/冲突检测,是一种用于数据通信的介质访问控制协议,广泛应用于局域网(特别是以…

vue仿chatGpt的AI聊天功能--大模型通义千问(阿里云)

vue仿chatGpt的AI聊天功能–大模型通义千问(阿里云) 通义千问是由阿里云自主研发的大语言模型,用于理解和分析用户输入的自然语言。 1. 创建API-KEY并配置环境变量 打开通义千问网站进行登录,登陆之后创建api-key,右…

李宏毅机器学习2023-HW10-Adversarial Attack

文章目录 TaskBaselineFGSM (Fast Gradient Sign Method (FGSM)I-FGSM(Iterative Fast Gradient Sign Method)MI-FGSM(Momentum Iterative Fast Gradient Sign Method)M-DI2-FGSM(Diverse Input Momentum Iterative Fast Gradient Sign Method) Reportfgsm attackJepg Compress…

Iceberg 基本操作和快速入门

安装 Iceberg 是一种适用于大型分析表的高性能工具,通过spark启动并运行iceberg,文章是通过docker来进行安装并测试的 新建一个docker-compose.yml文件 文件内容 version: "3" services: spark-iceberg: image: tabulario/spark-iceberg co…

数据结构之链表(2),双向链表

目录 前言 一、链表的分类详细 二、双向链表 三、双向链表的实现 四、List.c文件的完整代码 五、使用演示 总结 前言 接着上一篇单链表来详细说说链表中什么是带头和不带头,“哨兵位”是什么,什么是单向什么是双向,什么是循环和不循环。然后实…

微信小程序map组件自定义气泡真机不显示

最近遇到一个需求需要使用uniapp的map自定义气泡 ,做完之后发现在模拟器上好好的,ios真机不显示,安卓页数时好时不好的 一番查询发现是小程序的老问题了,网上的方法都试了也没能解决 后来看到有人说用nvue可以正常显示&#xff0c…

word2vector训练代码详解

目录 1.代码实现 2.知识点 1.代码实现 #导包 import math import torch from torch import nn import dltools #加载PTB数据集 ,需要把PTB数据集的文件夹放在代码上一级目录的data文件中,不用解压 #批次大小、窗口大小、噪声词大小 batch_size, ma…

《深度学习》卷积神经网络CNN 实现手写数字识别

目录 一、卷积神经网络CNN 1、什么是CNN 2、核心 3、构造 二、案例实现 1、下载训练集、测试集 代码实现如下: 2、展示部分图片 运行结果: 3、图片打包 运行结果: 4、判断当前使用的CPU还是GPU 5、定义卷积神经网络 运行结果&a…

后端-对表格数据进行添加、删除和修改

一、添加 要求: 按下添加按钮出现一个板块输入添加的数据信息,点击板块的添加按钮,添加;点击取消,板块消失。 实现: 1.首先,设计页面输入框格式,表格首行 2.从数据库里调数据 3.添加…

LPDDR4芯片学习(二)——Functional Description

一、LPDDR4寻址表 以每个die容量为4GB为例: Memory density(per channel) 2Gb:每个通道大小为2Gb,一个die有两个通道Configuration 16Mb 16DQ 8 banks 2 channels :16Mb的寻址空间16位每个channels8个bank*每个die两channels。1…

Java基础(Arrays工具类)(asList()方法)(详细)

目录 一、Arrays工具类 (1)引言 (2)基本介绍 (3)主要功能(提供的方法) (I)排序(Arrays.sort()) (II)搜索(查找…