二分查找算法专题(1)

找往期文章包括但不限于本期文章中不懂的知识点:

个人主页:我要学编程(ಥ_ಥ)-CSDN博客

所属专栏: 优选算法专题

目录

二分查找算法的介绍 

704. 二分查找

34. 在排序数组中查找元素的第一个和 最后一个位置

35. 搜索插入位置 

69. x的平方根 

总结


二分查找算法的介绍 

想必大家对这个算法应该不算陌生了,在C语言阶段就已经学习过了。 其是在暴力枚举的基础上进行优化的。例如:在一个有序数组中查找某个元素是否存在。

但是二分查找算法也有缺点,就是需要数据有二段性,不一定是数组全部有序。

二分查找算法其实也是双指针算法中对撞指针的一种拓展,主要是利用了数据的二段性。

下面我们就来进行练习。

704. 二分查找

题目:

给定一个 n 个元素有序的(升序)整型数组 nums 和一个目标值 target  ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1


示例 1:

输入: nums = [-1,0,3,5,9,12], target = 9输出: 4
解释: 9 出现在 nums 中并且下标为 4

示例 2:

输入: nums = [-1,0,3,5,9,12], target = 2输出: -1
解释: 2 不存在 nums 中因此返回 -1

提示:

  1. 你可以假设 nums 中的所有元素是不重复的。
  2. n 将在 [1, 10000]之间。
  3. nums 的每个元素都将在 [-9999, 9999]之间。

思路:这里既可以使用最简单的暴力枚举,也可以使用二分查找来解决。

代码实现:

暴力枚举:

class Solution {public int search(int[] nums, int target) {for (int i = 0; i < nums.length; i++) {if (nums[i] == target) {return i;}}return -1;}
}

 二分查找:

class Solution {public int search(int[] nums, int target) {int left = 0;int right = nums.length-1;while (left <= right) { // 这里得判断=的情况int mid = (left+right) / 2; // 这里可能会有溢出的风险if (nums[mid] > target) {right = mid-1;} else if (nums[mid] < target) {left = mid+1;} else {return mid;}}return -1;}
}

注意:由于本题数据量不是很大,因此 mid = (left+right) / 2; 就不会溢出,但是当数据量非常大时,两者相加就会导致溢出。有小伙伴可能会有疑惑:left 为 0,right 在 int 中,为什么会导致溢出呢?确实这种情况是正常的,但是当第二次计算mid 且left 为上一次的mid 值呢?这就会溢出了。解决办法为:mid = left + (right - left)/2;上面这个题目只是来练练手,下面才开始真正的算法题。

34. 在排序数组中查找元素的第一个和 最后一个位置

题目:

给你一个按照非递减顺序排列的整数数组 nums,和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。

如果数组中不存在目标值 target,返回 [-1, -1]

你必须设计并实现时间复杂度为 O(log n) 的算法解决此问题。

示例 1:

输入:nums = [5,7,7,8,8,10], target = 8
输出:[3,4]

示例 2:

输入:nums = [5,7,7,8,8,10], target = 6
输出:[-1,-1]

示例 3:

输入:nums = [], target = 0
输出:[-1,-1]

提示:

  • 0 <= nums.length <= 105
  • -109 <= nums[i] <= 109
  • nums 是一个非递减数组
  • -109 <= target <= 109

思路:题目说给的数组是非递减的,什么意思呢?

这里要查找的不是一个元素,而是一组连续的数据,也就是一段连续的子区间。 这里可能有小伙伴会想到我们前面学习的滑动窗口算法求子序列的问题。 但是这里不应该优先使用这个方法,因为滑动窗口算法是同向双指针, 而这里我们推测出了数据的特性,应该优先使用二分查找。

这里是要查找一组数据的端点下标,那么我们就可以直接忽略这组数据的中间,直接找端点即可。那么这就从查找一段数据,变为了查找两个值。但是新的问题又来了,怎么找端点呢?相信有聪明的小伙伴已经想到怎么做了。直接暴力枚举去遍历数组就完了。没错,这虽然是一个笨办法,但是总好过没有办法。

遍历的方式:从数组最左端开始遍历,找左端点,接着从数组最右端开始,找右端点即可。

代码实现:

class Solution {public int[] searchRange(int[] nums, int target) {int[] ans = {-1,-1};if (nums.length == 0) { // 排除特殊情况return ans;}// 找左端点int left = 0;while (left < nums.length && nums[left] != target) { // 防止越界left++;}if (left == nums.length) { // 数组中没有目标值return ans;} else {ans[0] = left;}// 找右端点int right = nums.length-1;while (right >= 0 && nums[right] != target) { // 防止越界right--;}if (right >= 0) {ans[1] = right;}return ans;}
}

虽然这是暴力枚举,但是从力扣上面的结果来看,还是不错的。

上面的方法可以说是流氓做法了,不符合题目的要求:用二分查找来解决。

二分查找同样还是去找符合数据的左端点和右端点。

寻找左端点过程:

寻找右端点过程(精简版):

上面处理这么多,其实就是在证明三件事:

1、根据查找的端点位置,从而划分了合法区域和非法区域,因为端点位置肯定是在有效区域内的。再根据 left 和 right 的相对位置来判断下一步的走向。

左端点:left = mid + 1 ---> 跳出非法区域;right = mid ---> 保留在合法区域。

右端点:left = mid ---> 保留在合法区域;right = mid -1 ---> 跳出非法区域。

2、在查找的过程中,中点的选取。根据查找的端点位置和第一点的结论,从而决定中点的位置。

左端点:right = mid 的特性可能会导致最后死循环,因此中点尽量要靠左,即 mid = left + (right-left) / 2。

右端点:left = mid 的特性可能会导致最后死循环,因此中点尽量要靠右,即 mid = left + (right-left +1) / 2。

3、 查找左端点和右端点的过程中,循环条件只能是 left < right,绝不能出现等于的情况,可能会导致死循环。因为一旦相遇并且结果满足 right 或者 left 不动的情况,那么就会死循环。

上面这些细节问题处理完之后,代码就比较好写了。

代码实现:

class Solution {public int[] searchRange(int[] nums, int target) {int[] ans = {-1,-1};if (nums.length == 0) { // 排除特殊情况return ans;}// 找左端点int left = 0;int right = nums.length-1;while (left < right) {int mid = left + (right-left) / 2; // 找靠左的位置if (nums[mid] >= target) {right = mid; // 保证在合法区域内} else {left = mid+1; // 保证有可能跳出非法区域}}// 走到这里,说明left与right相遇了if (nums[left] == target) { // 判断是否为左端点ans[0] = left; // left 与 right 都是可以的} else { // 说明数组中没有要找的数据return ans;}// 找右端点left = 0;right = nums.length-1;while (left < right) {int mid = left + (right-left+1) / 2; // 找靠右的位置if (nums[mid] <= target) {left = mid; // 保证在合法区域内} else {right = mid-1; // 保证有可能跳出非法区域}}// 走到这里,说明left与right相遇了if (nums[right] == target) { // 判断是否为右端点ans[1] = right; // left 与 right 都是可以的}return ans;}
}

还有两个要注意的地方:

因此数组中一旦存在我们要查找的数据的话,肯定是存在左右端点的。

35. 搜索插入位置 

题目:

给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。

请必须使用时间复杂度为 O(log n) 的算法。

示例 1:

输入: nums = [1,3,5,6], target = 5
输出: 2

示例 2:

输入: nums = [1,3,5,6], target = 2
输出: 1

示例 3:

输入: nums = [1,3,5,6], target = 7
输出: 4

提示:

  • 1 <= nums.length <= 104
  • -104 <= nums[i] <= 104
  • nums 为 无重复元素 的 升序 排列数组
  • -104 <= target <= 104

思路:这里和第一题有点类似,但不同的是这一题的数组中可能不存在 target 这个数据。但是方法还是类似的。

当 [target,right] 区间是合法区间时,right = mid ---> 保证 right 在合法区间内,left = mid+1 ---> 保证 left 有可能进入合法区间,mid = left + (right - left) / 2 ---> 靠左的位置。同理,当[left,target]为合法区间时,也是类似的,这里就不过多赘述了。

代码实现:

1、当 [left, target] 是合法区间时:

class Solution {public int searchInsert(int[] nums, int target) {int left = 0;int right = nums.length-1;// 假设[left, target]是合法区间while (left < right) {int mid = left + (right-left+1) / 2;if (nums[mid] > target) {right = mid-1;} else {left = mid;}}// 判断是否存在if (nums[left] == target) { // 实际存在return left;} else { // 不存在// 判断是插入左边还是右边位置if (nums[left] > target) {return left;} else {return left+1;}}}
}

2、 当 [target,right] 是合法区间时:

class Solution {public int searchInsert(int[] nums, int target) {int left = 0;int right = nums.length-1;// 假设[target, right]是合法区间while (left < right) {int mid = left + (right-left) / 2;if (nums[mid] >= target) {right = mid;} else {left = mid+1;}}// 判断是否存在if (nums[left] == target) { // 实际存在return left;} else { // 不存在// 判断是插入左边还是右边位置if (nums[left] > target) {return left;} else {return left+1;}}}
}

69. x的平方根 

题目:

给你一个非负整数 x ,计算并返回 x 的 算术平方根 。

由于返回类型是整数,结果只保留 整数部分 ,小数部分将被 舍去 。

注意:不允许使用任何内置指数函数和算符,例如 pow(x, 0.5) 或者 x ** 0.5 。

示例 1:

输入:x = 4
输出:2

示例 2:

输入:x = 8
输出:2
解释:8 的算术平方根是 2.82842..., 由于返回类型是整数,小数部分将被舍去。

提示:

  • 0 <= x <= 231 - 1

思路: 题目让我们求一个大于等于0整数的算术平方根,并且对最终结果进行向下取整。

方法一:直接暴力枚举即可。

代码实现:

class Solution {// 暴力枚举public int mySqrt(int x) {if (x == 0 || x == 1) { // 排除特殊情况return x;}for (long i = 1; i <= x; i++) {if (i * i == x) {return (int)i;} else if (i * i > x) {return (int)i-1;}}return -1; // 这里只是过审}
}

注意:由于最后面的 return -1;只是为了让我们的代码编译通过,并不起实际的作用。

我们前面的暴力枚举就是把 [1,x] 之间的数据按照升序的方式挨个使了个遍。 从这里我们就可以使用二分查找算法了。

其实我们最终的目的就是为了找到大于或者的结果,然后再让大于的-1,等于的不变,而这些只能让 target 和 left 在一起。

代码实现:

class Solution {// 二分查找public int mySqrt(int x) {if (x == 0 || x == 1) { // 排除特殊情况return x;}long left = 1;long right = x;// 最终的结果是向下取整的,即 <= 是合法区域的while (left < right) {long mid = left + (right-left+1) / 2;if (mid*mid > x) {right = mid-1;} else {left = mid;}}// 找到了return (int)left;}
}

注意:

1、数据量是比较大的,因此相乘的结果会溢出,我们得用 long类型来接收。 

2、这里的二分查找是不能使用第一道题的那种的。

其实没弄明白也没关系,这里反正就两种情况,可以直接去套用,再不济暴力枚举总可以了吧。

总结

1、对于查找固定的数据的情况,可以使用第一题中的二分查找方法:根据要查找的结果,进行比较分为三种情况——大于、等于、小于。

2、对于范围(区间)查找和不确定性查找的情况,可以使用我们后面画图推出来的二分查找:根据查找的结果,进行比较分为两种情况——合法区域、非法区域(根据要查找的数据进行分区),然后再分别更新 left 和 right——合法的一定要确保依旧存在于合法区域,非法的要确保有希望调到合法区域。再就是计算中点的方式和循环条件的确定,都是由 left 和 right 的变化来决定的(具体可见图)。

我们以后常用的也是第二种二分查找的方法。

好啦!本期 二分查找算法专题(1)的学习之旅就到此结束啦!我们下一期再一起学习吧!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/437434.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Java网络通信—UDP

0.小记 1.udp通信不需要建立socket管道&#xff0c;一边只管发&#xff0c;一边只管收 2.客户端&#xff1a;将数据&#xff08;byte&#xff09;打包成包裹&#xff08;DatagramPacket&#xff09;&#xff0c;写上地址&#xff08;IP端口&#xff09;&#xff0c;通过快递站&…

【网络安全】Cookie与ID未强绑定导致账户接管

未经许可,不得转载。 文章目录 前言正文前言 DigiLocker 是一项在线服务,旨在为公民提供一个安全的数字平台,用于存储和访问重要的文档,如 Aadhaar 卡、PAN 卡和成绩单等。DigiLocker 通过多因素身份验证(MFA)来保护用户账户安全,通常包括 6 位数的安全 PIN 和一次性密…

大数据开发--1.2 Linux介绍及虚拟机网络配置

目录 一. 计算机入门知识介绍 软件和硬件的概述 硬件 软件 操作系统概述 简单介绍 常见的系统操作 学习Linux系统 二. Linux系统介绍 简单介绍 发行版介绍 常用的发行版 三. Linux系统的安装和体验 Linux系统的安装 介绍 虚拟机原理 常见的虚拟机软件 体验Li…

[Linux] Linux 的进程如何调度——Linux的 O(1)进程调度算法

标题&#xff1a;[Linux] Linux 的进程如何调度——优先级与进程调度 个人主页水墨不写bug 目录 一、前言 二、将要出现的概念 1.进程调度队列 2.位图 3.进程的优先级 三、Linux进程的调度过程 1.活动队列&#xff08;*active指向的队列&#xff09; 2.过期队列&#…

openKylin--安装 .net6.0

编辑profile文件 cd .. //切换到根目录 cd /etc //切换到etc目录 vim profile //b编辑profile文件 1. 按→键移动到文件末尾 2. 按Insert键进入编辑模式 3. 按Enter另起一行开始编辑 export DOTNET_ROOT/home/dotnetexport PATH$PATH:/home/dotnet 可以通过右键--粘贴 的…

模拟实战数据落地:MSsql通过存储过程获得销售数据视图

话不多说 目标需求:通过传递参数(查询条件及查询时间)调用存储过程获得销售数据视图,并且在视图中有时间字段供后续引用,实现数据对接获取任务 最终结果如图: 实现以上结果步骤如下: 1)建立users表和orders表分别代表用户及订单,其中订单中用户id与用户表中用户id关联,并随机…

LLM - 使用 vLLM 部署 Qwen2-VL 多模态大模型 (配置 FlashAttention) 教程

欢迎关注我的CSDN:https://spike.blog.csdn.net/ 本文地址:https://spike.blog.csdn.net/article/details/142528967 免责声明:本文来源于个人知识与公开资料,仅用于学术交流,欢迎讨论,不支持转载。 vLLM 用于 大语言模型(LLM) 的推理和服务,具有多项优化技术,包括先进…

VMware ESXi Centos7网卡名称 ens192 变更eth0

1.在 /etc/sysconfig/network-scirpts/ 文件夹下 创建一个ifcfg-eth0的文件&#xff0c; 最简单的方式是 mv ifcfg-ens192 ifcfg-eth0 然后 vi ifcfg-eth0 把DEVICE改成 DEVICEeth0 wq! 保存 2. vi /etc/sysconfig/grub # 在位置添加 net.ifnames0 biosdevname0 参数 完…

java基础 day1

学习视频链接 人机交互的小故事 微软和乔布斯借鉴了施乐实现了如今的图形化界面 图形化界面对于用户来说&#xff0c;操作更加容易上手&#xff0c;但是也存在一些问题。使用图形化界面需要加载许多图片&#xff0c;所以消耗内存&#xff1b;此外运行的速度没有命令行快 Wi…

【iOS】计算器的仿写

计算器 文章目录 计算器前言简单的四则运算UI界面事件的逻辑小结 前言 笔者应组内要求&#xff0c;简单实现了一个可以完成简单四则运算的计算器程序。UI界面则是通过最近学习的Masonry库来实现的&#xff0c;而简单的四则运算内容则是通过栈来实现一个简单的四则运算。 简单…

QSqlDatabase在多线程中的使用

Qt中多线程使用数据库_qt数据库管理类支持多数据库,多线程-CSDN博客 1. 代码&#xff1a; #ifndef WIDGET_H #define WIDGET_H#include <QWidget> #include <QPushButton> #include <QSqlDatabase> #include <QSqlQuery> #include <QSqlError>…

【SpringBoot详细教程】-08-MybatisPlus详细教程以及SpringBoot整合Mybatis-plus【持续更新】

目录 🌲 MyBatis Plus 简介 🌾入门案例 🌾 MP 简介 🌲 MP 的CRUD 🌾 新增 🌾 删除 🌾 修改在进行 🌾 根据ID查询 🌾 查询所有 🌲 分页功能 🌾 设置分页参数 🌾 设置分页拦截器 🌲 优化启动 🌾 取消mbatisPlusBanner 🌾 取消Sprin…

L0-Linux-关卡材料提交

SSH全称Secure Shell&#xff0c;中文翻译为安全外壳&#xff0c;它是一种网络安全协议&#xff0c;通过加密和认证机制实现安全的访问和文件传输等业务。SSH 协议通过对网络数据进行加密和验证&#xff0c;在不安全的网络环境中提供了安全的网络服务。 SSH 是&#xff08;C/S…

大学学校用电安全远程监测预警系统

1.概述&#xff1a; 该系统是基于移动互联网、云计算技术&#xff0c;通过物联网传感终端&#xff0c;将办公建筑、学校、医院、工厂、体育场馆、宾馆、福利院等人员密集场所的电气安全数据&#xff0c;实时传输至安全用申管理服务器&#xff0c;为用户提供不间断的数据跟踪&a…

Linux shell编程学习笔记84:tee命令——显示保存两不误

0 引言 在前面的学习笔记中&#xff0c;我们经常使用echo命令和输出重定向来生成脚本文件或演示文件&#xff0c;其实Linux提供了一个可以从标准输入读取数据&#xff0c;并输出成文件的命令——tee。 1 tee命令 的帮助信息、功能、命令格式、选项和参数说明 1.1 tee命令 的…

基于Hive和Hadoop的用电量分析系统

本项目是一个基于大数据技术的用电量分析系统&#xff0c;旨在为用户提供全面的电力消耗信息和深入的用电量分析。系统采用 Hadoop 平台进行大规模数据存储和处理&#xff0c;利用 MapReduce 进行数据分析和处理&#xff0c;通过 Sqoop 实现数据的导入导出&#xff0c;以 Spark…

Windows 11 安装配置 Git 教程

目录 Git Windows 11 环境安装配置 Git Git Git是一个开源的分布式版本控制系统&#xff0c;由Linus Torvalds创建&#xff0c;用于有效、高速地处理从小到大的项目版本管理。Git是目前世界上最流行的版本控制系统&#xff0c;广泛应用于软件开发中。 以下是Git的一些关键特…

【2024最新】华为HCIE认证考试流程

HCIE是华为认证体系中最高级别的ICT技术认证&#xff0c;表示通过认证的人具有ICT领域专业知识和丰富实践经验。 HCIE认证方向&#xff1a;最高认证级别HCIE的技术方向有13个 下面以HCIE-Datacom为例给大家介绍一下&#xff1a; HCIE-Datacom认证考试流程&#xff1a; 1.笔试…

查找与排序-快速排序

排序算法可以分为内部排序和外部排序&#xff0c;内部排序是数据记录在内存中进行排序&#xff0c;而外部排序是因排序的数据很大&#xff0c;一次不能容纳全部的排序记录&#xff0c;在排序过程中需要访问外存。常见的内部排序算法有&#xff1a;插入排序、希尔排序、选择排序…

【Linux系统编程】第二十六弹---彻底掌握文件I/O:C/C++文件接口与Linux系统调用实践

✨个人主页&#xff1a; 熬夜学编程的小林 &#x1f497;系列专栏&#xff1a; 【C语言详解】 【数据结构详解】【C详解】【Linux系统编程】 目录 1、回顾C语言文件接口 1.1、以写的方式打开文件 1.2、以追加的方式打开文件 2、初步理解文件 2.1、C文件接口 3、进一步理…