深度学习基础—残差网络ResNets

1.残差网络结构


        当网络训练的很深很深的时候,效果是否会很好?在这篇论文中,作者给出了答案:Deep Residual Learning for Image Recognitionicon-default.png?t=O83Ahttps://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/He_Deep_Residual_Learning_CVPR_2016_paper.pdf

        实际证明,越深的网络效果可能没有规模小的网络好。这是由于网络训练的很深的时候,会出现梯度消失或梯度爆炸的情况,网络难以训练,从而产生退化问题。而残差网络可以解决这个问题,帮助训练层数较多的网络。

(1)残差块

        对于网络的一层,原本的操作是先进行权重参数的线性组合,在进行激活函数的计算。而残差块直接将某一层的输出值转移到其后某层的激活函数计算前,即激活函数计算前将(上一层的输出+转移的值)一起作为输入。

        我们来推导一下计算公式,还以上图为例,假设当前的输入x为a[l],则经过l+1层的线性组合后变成:

        经过l+1层的Relu激活函数后变为:

        经过l+2层的线性组合后变为:

        此时,激活函数计算前应该加上a[l],经过l+2层的线性组合后变为:

        这就是一个残差块,由残差块组成的网络就是残差网络。残差又称为跳跃连接。

        注意:这只是在普通网络实现残差块,在文章开头的链接中,是在卷积神经网络中实现残差神经网络的,如下:

        最右侧的网络就是残差网络的作者实现34层残差网络,每两层卷积层作为一个残差层(池化层不含参数,不计入层数)。

(2)残差块的意义

        将上述推导的公式展开:

        当进行L2正则化或者权重衰减,参数的值会被压缩,W[l+2]和b[l+2]的值就可能接近0。假设W[l+2]和b[l+2]的值为0,此时进行Relu激活函数后a[l+2]=a[l]。也就是恒等式,经验表明网络学习一个恒等式很容易,说明增加残差块对网络的表现几乎没有影响。

        但是,我们的目的是让网络有更好的表现,如果残差块的神经元学习到一些有用的信息,就会为网络带来更好的表现。因此残差块的意义就是:保证网络表现不会更低的情况下,寻找更优的网络结构。

2.注意事项


        可能有人会注意到,a[l]直接转移到某一层激活函数前,万一维度不一致无法计算怎么办?

        实际上残差网络使用了许多same卷积,因此可以保证残差块计算的维度一致。但如果出现了维度不一致,可以进行如下操作:

        在a[l]前进行一次矩阵运算,保证Wsa[l]的输出维度和要运算的上一层输出维度一致,比如z[l+2]是256大小的向量,而a[l]的大小是128,就可以把Ws的大小固定为256*128,此时维度就保证了一致,然后把Ws作为参数进行学习。

        也可以扩充a[l]的大小,进行padding操作,用0填充。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/438305.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

OpenAI o1 与 GPT-4o:前沿AI全面比较下你更倾向哪一款

前言 就在前不久,OpenAI 发布了推理能力更强可达理科博士生水准的o1 模型,业界也表示这标志着人工智能发展的新里程碑,特别是在复杂问题解决和推理方面。 然而,该模型与其前身GPT-4o有很大不同,后者仍然广泛用于通用…

Pix2Pix实现图像转换

tutorials/application/source_zh_cn/generative/pix2pix.ipynb MindSpore/docs - Gitee.com Pix2Pix概述 Pix2Pix是基于条件生成对抗网络(cGAN, Condition Generative Adversarial Networks )实现的一种深度学习图像转换模型,该模型是由Ph…

HUAWEI New4.9G 与 2.6G 无法正常切换问题处理案例

HUAWEI New4.9G 与 2.6G 无法正常切换问题处理案例 在某地市的 XX 音乐节保障准备期间,为确保活动期间的网络质量,现场新开了 4.9G HUAWEI 室外基站。在网络优化和测试中,发现UE无法实现从 2.6G 到 4.9G 的正常切换。虽然现场具备 4.9G信号覆…

Python | Leetcode Python题解之第448题找到所有数组中消失的数字

题目&#xff1a; 题解&#xff1a; class Solution:def findDisappearedNumbers(self, nums: List[int]) -> List[int]:n len(nums)for num in nums:x (num - 1) % nnums[x] nret [i 1 for i, num in enumerate(nums) if num < n]return ret

YOLOv8 结合设计硬件感知神经网络设计的高效 Repvgg的ConvNet 网络结构 ,改进EfficientRep结构

一、理论部分 摘要—我们提出了一种硬件高效的卷积神经网络架构,它具有类似 repvgg 的架构。Flops 或参数是评估网络效率的传统指标,这些网络对硬件(包括计算能力和内存带宽)不敏感。因此,如何设计神经网络以有效利用硬件的计算能力和内存带宽是一个关键问题。本文提出了一…

1、Spring Boot 3.x 集成 Eureka Server/Client

一、前言 基于 Spring Boot 3.x 版本开发&#xff0c;因为 Spring Boot 3.x 暂时没有正式发布&#xff0c;所以很少有 Spring Boot 3.x 开发的项目&#xff0c;自己也很想了踩踩坑&#xff0c;看看 Spring Boot 3.x 与 2.x 有什么区别。自己与记录一下在 Spring Boot 3.x 过程…

exe4j安装使用教程

A-XVK258563F-1p4lv7mg7sav A-XVK209982F-1y0i3h4ywx2h1 A-XVK267351F-dpurrhnyarva A-XVK204432F-1kkoilo1jy2h3r A-XVK246130F-1l7msieqiwqnq A-XVK249554F-pllh351kcke50

第5篇:MySQL日志分析----应急响应之日志分析篇

常见的数据库攻击包括弱口令、SQL注入、提升权限、窃取备份等。对数据库日志进行分析&#xff0c;可以发现攻击行为&#xff0c;进一步还原攻击场景及追溯攻击源。 0x01 Mysql日志分析 general query log能记录成功连接和每次执行的查询&#xff0c;我们可以将它用作安全布防…

Android SystemUI组件(08)睡眠灭屏 锁屏处理流程

该系列文章总纲链接&#xff1a;专题分纲目录 Android SystemUI组件 本章关键点总结 & 说明&#xff1a; 说明&#xff1a;本章节持续迭代之前章节的思维导图&#xff0c;主要关注左侧上方锁屏分析部分 睡眠灭屏 即可。 Power按键的处理逻辑最终是由PhoneWindowManager来完…

【数据结构】图的最小生成树

快乐的流畅&#xff1a;个人主页 个人专栏&#xff1a;《C游记》《进击的C》《Linux迷航》 远方有一堆篝火&#xff0c;在为久候之人燃烧&#xff01; 文章目录 引言一、最小生成树的概念二、Kruskal算法2.1 思想2.2 实现 三、Prim算法3.1 思想3.2 实现 四、Kruskal和Prim的对比…

Spring Task 调度任务

Spring Task是调度任务框架&#xff0c;通过配置&#xff0c;程序可以按照约定的时间自动执行代码逻辑&#xff0c;基于注解方式实现需要如下注解&#xff1a; Component 任务调度类交给Spring IOC容器管理EnableScheduling 启用 Spring 的定时任务&#xff08;Scheduling&…

索尼MDR-M1:超宽频的音频盛宴,打造沉浸式音乐体验

在音乐的世界里&#xff0c;每一次技术的突破都意味着全新的听觉体验。 索尼&#xff0c;作为音频技术的先锋&#xff0c;再次以其最新力作——MDR-M1封闭式监听耳机&#xff0c;引领了音乐界的新潮流。 这款耳机以其超宽频播放和卓越的隔音性能&#xff0c;为音乐爱好者和专…

k8s中,ingress的实现原理,及其架构。

图片来源&#xff1a;自己画的 图片来源&#xff1a;k8s官网 首先&#xff0c;什么是ingress? 是服务还是控制器&#xff1f; 都不精确 ingress是一个api资源 service和deployment也是api资源。 这几个相互协作&#xff0c;组建成一个对外提供服务的架构。 ingress提供的…

[C++]使用纯opencv部署yolov11目标检测onnx模型

yolov11官方框架&#xff1a;https://github.com/ultralytics/ultralytics 【算法介绍】 在C中使用纯OpenCV部署YOLOv11进行目标检测是一项具有挑战性的任务&#xff0c;因为YOLOv11通常是用PyTorch等深度学习框架实现的&#xff0c;而OpenCV本身并不直接支持加载和运行PyTor…

系统安全 - RedisMySQL安全及实践

文章目录 导图Redis 安全潜在的安全风险防护措施密码认证命令重命名权限最小化日志和审计 Red网络隔离 MySQL 安全认证和授权文件操作风险传输和存储加密最小权限原则审计 总结 导图 Redis 安全 Redis的设计初衷是为了在可信环境下提供高性能的KV数据库服务&#xff0c;因此它…

FiBiNET模型实现推荐算法

1. 项目简介 A031-FiBiNET模型项目是一个基于深度学习的推荐系统算法实现&#xff0c;旨在提升推荐系统的性能和精度。该项目的背景源于当今互联网平台中&#xff0c;推荐算法在电商、社交、内容分发等领域的广泛应用。推荐系统通过分析用户的历史行为和兴趣偏好&#xff0c;预…

【NIO基础】NIO(非阻塞 I/O)和 IO(传统 I/O)的区别,以及 NIO 的三大组件详解

目录 1、NIO 2、NIO 和 IO 的区别 1. 阻塞 vs 非阻塞 2. 一个线程 vs 多个连接 3. 面向流 vs 面向缓冲 4. 多路复用 3、Channel & Buffer (1&#xff09;Channel&#xff1a;双向通道 (2&#xff09;Buffer&#xff1a;缓冲区 (3&#xff09;ByteBuffer&#xff…

用Arduino单片机读取PCF8591模数转换器的模拟量并转化为数字输出

PCF8591是一款单芯片&#xff0c;单电源和低功耗8位CMOS数据采集设备。博文[1]对该产品已有介绍&#xff0c;此处不再赘述。但该博文是使用NVIDIA Jetson nano运行python读取输入PCF8591的模拟量的&#xff0c;读取的结果显示在屏幕上&#xff0c;或输出模拟量点亮灯。NVIDIA J…

计算机毕业设计 基于Python的智能文献管理系统的设计与实现 Python+Django+Vue 前后端分离 附源码 讲解 文档

&#x1f34a;作者&#xff1a;计算机编程-吉哥 &#x1f34a;简介&#xff1a;专业从事JavaWeb程序开发&#xff0c;微信小程序开发&#xff0c;定制化项目、 源码、代码讲解、文档撰写、ppt制作。做自己喜欢的事&#xff0c;生活就是快乐的。 &#x1f34a;心愿&#xff1a;点…

讯飞星火编排创建智能体学习(四):网页读取

目录 引言 网页读取节点 如何生成网址 测试 引言 在讯飞星火编排创建智能体学习&#xff08;三&#xff09;&#xff1a;搜索工具-CSDN博客中&#xff0c;我介绍了如何用搜索工具从网上搜索车次信息。不过&#xff0c;在测试中我们也发现讯飞星火的这个工具并不是特别完善&…