【机器学习】探索GRU:深度学习中门控循环单元的魅力

 

目录

🍔 GRU介绍

🍔 GRU的内部结构图

2.1 GRU结构分析

2.2 GRU工作原理

2.4 Bi-GRU介绍

2.3 使用Pytorch构建GRU模型

2.5 GRU优缺点

🍔 小结


学习目标

🍀 了解GRU内部结构及计算公式.

🍀 掌握Pytorch中GRU工具的使用.

🍀 了解GRU的优势与缺点.

🍔 GRU介绍

GRU(Gated Recurrent Unit)也称门控循环单元结构, 它也是传统RNN的变体, 同LSTM一样能够有效捕捉长序列之间的语义关联, 缓解梯度消失或爆炸现象. 同时它的结构和计算要比LSTM更简单, 它的核心结构可以分为两个部分去解析:

  • 更新门

用于控制上一时间步的隐藏状态是否对当前时间步的输入进行更新。更新门的作用类似于LSTM中的遗忘门和输入门的组合,它决定了新信息进入当前隐藏状态的比例,以及保留多少旧信息。

  • 重置门

用于控制如何使用历史信息。当重置门接近0时,它几乎会忽略掉所有的历史信息,而只关注当前输入。这有助于模型在处理新的输入时能够“忘记”不相关的信息,从而更好地捕捉序列中的长期依赖关系。

🍔 GRU的内部结构图

2.1 GRU结构分析


  • 结构解释图:


  • GRU的更新门和重置门结构图:


  • 内部结构分析:

    • 和之前分析过的LSTM中的门控一样, 首先计算更新门和重置门的门值, 分别是z(t)和r(t), 计算方法就是使用X(t)与h(t-1)拼接进行线性变换, 再经过sigmoid激活. 之后重置门门值作用在了h(t-1)上, 代表控制上一时间步传来的信息有多少可以被利用. 接着就是使用这个重置后的h(t-1)进行基本的RNN计算, 即与x(t)拼接进行线性变化, 经过tanh激活, 得到新的h(t). 最后更新门的门值会作用在新的h(t),而1-门值会作用在h(t-1)上, 随后将两者的结果相加, 得到最终的隐含状态输出h(t), 这个过程意味着更新门有能力保留之前的结果, 当门值趋于1时, 输出就是新的h(t), 而当门值趋于0时, 输出就是上一时间步的h(t-1).

2.2 GRU工作原理

  • GRU通过引入重置门和更新门来控制信息的流动。重置门决定了当前输入与前一时刻状态如何混合,而更新门则决定了多少旧状态信息被保留到下一个状态。
  • 基于重置门和当前输入,GRU计算出一个候选隐藏状态,这个状态既包含了当前输入的信息,也包含了经过选择性保留的历史信息。
  • 最后,GRU根据更新门的选择性地将旧隐藏状态和候选隐藏状态进行加权平均,得到新的隐藏状态。这个过程既保留了长期依赖信息,又能够灵活地处理新的输入信息。

2.3 Bi-GRU介绍

Bi-GRU与Bi-LSTM的逻辑相同, 都是不改变其内部结构, 而是将模型应用两次且方向不同, 再将两次得到的LSTM结果进行拼接作为最终输出. 具体参见上小节中的Bi-LSTM.

2.4 使用Pytorch构建GRU模型

  • 位置: 在torch.nn工具包之中, 通过torch.nn.GRU可调用.

  • nn.GRU类初始化主要参数解释:

    • input_size: 输入张量x中特征维度的大小.
    • hidden_size: 隐层张量h中特征维度的大小.
    • num_layers: 隐含层的数量.
      • bidirectional: 是否选择使用双向LSTM, 如果为True, 则使用; 默认不使用.
  • nn.GRU类实例化对象主要参数解释:

    • input: 输入张量x.
      • h0: 初始化的隐层张量h.
  • nn.GRU使用示例:

>>> import torch
>>> import torch.nn as nn
>>> rnn = nn.GRU(5, 6, 2)
>>> input = torch.randn(1, 3, 5)
>>> h0 = torch.randn(2, 3, 6)
>>> output, hn = rnn(input, h0)
>>> output
tensor([[[-0.2097, -2.2225,  0.6204, -0.1745, -0.1749, -0.0460],[-0.3820,  0.0465, -0.4798,  0.6837, -0.7894,  0.5173],[-0.0184, -0.2758,  1.2482,  0.5514, -0.9165, -0.6667]]],grad_fn=<StackBackward>)
>>> hn
tensor([[[ 0.6578, -0.4226, -0.2129, -0.3785,  0.5070,  0.4338],[-0.5072,  0.5948,  0.8083,  0.4618,  0.1629, -0.1591],[ 0.2430, -0.4981,  0.3846, -0.4252,  0.7191,  0.5420]],[[-0.2097, -2.2225,  0.6204, -0.1745, -0.1749, -0.0460],[-0.3820,  0.0465, -0.4798,  0.6837, -0.7894,  0.5173],[-0.0184, -0.2758,  1.2482,  0.5514, -0.9165, -0.6667]]],grad_fn=<StackBackward>)

2.5 GRU优缺点

  • GRU的优势:

    • GRU和LSTM作用相同, 在捕捉长序列语义关联时, 能有效抑制梯度消失或爆炸, 效果都优于传统RNN且计算复杂度相比LSTM要小.
  • GRU的缺点:

    • GRU仍然不能完全解决梯度消失问题, 同时其作用RNN的变体, 有着RNN结构本身的一大弊端, 即不可并行计算, 这在数据量和模型体量逐步增大的未来, 是RNN发展的关键瓶颈.

🍔 小结

  • GRU(Gated Recurrent Unit)也称门控循环单元结构, 它也是传统RNN的变体, 同LSTM一样能够有效捕捉长序列之间的语义关联, 缓解梯度消失或爆炸现象. 同时它的结构和计算要比LSTM更简单, 它的核心结构可以分为两个部分去解析:

    • 更新门
    • 重置门
  • 内部结构分析:

    • 和之前分析过的LSTM中的门控一样, 首先计算更新门和重置门的门值, 分别是z(t)和r(t), 计算方法就是使用X(t)与h(t-1)拼接进行线性变换, 再经过sigmoid激活. 之后重置门门值作用在了h(t-1)上, 代表控制上一时间步传来的信息有多少可以被利用. 接着就是使用这个重置后的h(t-1)进行基本的RNN计算, 即与x(t)拼接进行线性变化, 经过tanh激活, 得到新的h(t). 最后更新门的门值会作用在新的h(t),而1-门值会作用在h(t-1)上, 随后将两者的结果相加, 得到最终的隐含状态输出h(t), 这个过程意味着更新门有能力保留之前的结果, 当门值趋于1时, 输出就是新的h(t), 而当门值趋于0时, 输出就是上一时间步的h(t-1).
  • Bi-GRU与Bi-LSTM的逻辑相同, 都是不改变其内部结构, 而是将模型应用两次且方向不同, 再将两次得到的LSTM结果进行拼接作为最终输出. 具体参见上小节中的Bi-LSTM.

  • Pytorch中GRU工具的使用:

    • 位置: 在torch.nn工具包之中, 通过torch.nn.GRU可调用.
  • GRU的优势:

    • GRU和LSTM作用相同, 在捕捉长序列语义关联时, 能有效抑制梯度消失或爆炸, 效果都优于传统RNN且计算复杂度相比LSTM要小.
  • GRU的缺点:

    • GRU仍然不能完全解决梯度消失问题, 同时其作用RNN的变体, 有着RNN结构本身的一大弊端, 即不可并行计算, 这在数据量和模型体量逐步增大的未来, 是RNN发展的关键瓶颈.

💘若能为您的学习之旅添一丝光亮,不胜荣幸💘

🐼期待您的宝贵意见,让我们共同进步共同成长🐼

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/438930.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【开源免费】基于SpringBoot+Vue.JS洗衣店订单管理系统(JAVA毕业设计)

本文项目编号 T 068 &#xff0c;文末自助获取源码 \color{red}{T068&#xff0c;文末自助获取源码} T068&#xff0c;文末自助获取源码 目录 一、系统介绍二、演示录屏三、启动教程四、功能截图五、文案资料5.1 选题背景5.2 国内外研究现状5.3 可行性分析 六、核心代码6.1 顾…

【Python】Uvicorn:Python 异步 ASGI 服务器详解

Uvicorn 是一个为 Python 设计的 ASGI&#xff08;异步服务器网关接口&#xff09;Web 服务器。它填补了 Python 在异步框架中缺乏一个最小化低层次服务器/应用接口的空白。Uvicorn 支持 HTTP/1.1 和 WebSockets&#xff0c;是构建现代异步Web应用的强大工具。 ⭕️宇宙起点 &a…

界星空科技漆包线行业称重系统

万界星空科技为漆包线行业提供的称重系统是其MES制造执行系统解决方案中的一个重要组成部分。以下是对该系统的详细介绍&#xff1a; 一、系统概述 万界星空科技漆包线行业称重系统&#xff0c;是集成在MES系统中的一个功能模块&#xff0c;专门用于漆包线生产过程中的重量检…

数据结构-LRU缓存(C语言实现)

遇到困难&#xff0c;不必慌张&#xff0c;正是成长的时候&#xff0c;耐心一点&#xff01; 目录 前言一、题目介绍二、实现过程2.1 实现原理2.2 实现思路2.2.1 双向链表2.2.2 散列表 2.3 代码实现2.3.1 结构定义2.3.2 双向链表操作实现2.3.3 实现散列表的操作2.3.4 内存释放代…

【玩转 JS 函数式编程_006】2.2 小试牛刀:用函数式编程(FP)实现事件只触发一次

文章目录 2.2 该问题的函数式解 A functional solution to our problem1. 高阶函数解 A higher-order solution2. 高阶函数解的手动测试 Testing the solution manually3. 高阶函数解的自动测试 Testing the solution automatically4. 更好的解决方案 Producing an even better…

idea创建springboot模块

1.点击file->新建->model server url&#xff1a;如果倒数第二个java选项没有11&#xff0c;就把这里改为阿里云的 name&#xff1a;模块名字 location&#xff1a;文件存放的位置 其他的根据图片自行填写 2. 3.验证 如果没有iml文件(不影响&#xff0c;可以不弄)&#…

LabVIEW提高开发效率技巧----属性节点优化

在LabVIEW开发中&#xff0c;优化代码的效率和性能是非常重要的&#xff0c;尤其是在涉及前面板控件的属性节点时。频繁使用属性节点可能会导致程序执行速度的明显下降&#xff0c;特别是在处理大量数据或高频率操作时。下面详细介绍一些在LabVIEW开发中优化属性节点使用的技巧…

数据结构--线性表(顺序结构)

1.线性表的定义和基本操作 1.1线性表以及基本逻辑 1.1.1线性表 &#xff08;1&#xff09;n(>0)个数据元素的有限序列&#xff0c;记作&#xff08;a1,a2,...an&#xff09;&#xff0c;其中ai是线性表中的数据元素&#xff0c;n是表的长度。 &#xff08;2&#xff09;…

4个顶级的大模型推理引擎

LLM 在文本生成应用中表现出色&#xff0c;例如具有高理解度和流畅度的聊天和代码完成模型。然而&#xff0c;它们的庞大规模也给推理带来了挑战。基本推理速度很慢&#xff0c;因为 LLM 会逐个生成文本标记&#xff0c;需要对每个下一个标记进行重复调用。随着输入序列的增长&…

ElasticSearch 备考 -- 备份和恢复

一、题目 备份集群下的索引 task&#xff0c;存储快照名称为 snapshot_1 二、思考 这个涉及的是集群的备份&#xff0c;主要是通过创建快照&#xff0c;涉及到以下2步骤 Setp1&#xff1a;注册一个备份 snapshot repository Setp2&#xff1a;创建 snapshot 可以通过两种方…

MindSearch 部署到Github Codespace 和 Hugging Face Space

conda init后需要重开终端&#xff0c;不然一键复制会导致后续pip install会安装错环境 还是报错 ImportError: cannot import name AutoRegister from class_registry (/opt/conda/envs/mindsearch/lib/python3.10/site-packages/class_registry/__init__.py)pip install --…

【技术分析】嘉楠科技SoC芯片K230

概述 K230是嘉楠科技Kendryte系列AIoT芯片中的最新一代SoC芯片&#xff0c;该芯片采用全新的多异构单元加速计算架构&#xff0c;集成的玄铁C908具有2个高能效RISCV计算核心&#xff0c;内置新一代KPU&#xff08;Knowledge Process Unit&#xff09;智能计算单元&#xff0c;…

Unity初识+面板介绍

Unity版本使用 小版本号高&#xff0c;出现bug可能性更小&#xff1b;一台电脑可以安装多个版本的Unity&#xff0c;但是需要安装在不同路径&#xff1b;安装Unity时不能有中文路径&#xff1b;Unity项目路径也不要有中文。 Scene面板 相当于拍电影的片场&#xff0c;Unity程…

Go基础学习11-测试工具gomock和monkey的使用

文章目录 基础回顾MockMock是什么安装gomockMock使用1. 创建user.go源文件2. 使用mockgen生成对应的Mock文件3. 使用mockgen命令生成后在对应包mock下可以查看生成的mock文件4. 编写测试代码5. 运行代码并查看输出 GomonkeyGomonkey优势安装使用对函数进行monkey对结构体中方法…

Chat登录时出现SSO信息出错的解决方法

目录 1. 问题所示2. 问题所示3. 解决方法 1. 问题所示 此贴主要是总结回顾&#xff0c;对此放置在运维专栏 出现如下问题&#xff0c;很懵&#xff0c;以为是节点挂了还是网址蹦了 一直刷新&#xff0c;登录之后就出现这个问题 2. 问题所示 对于SSO&#xff0c;也就是单点登…

深度学习项目----用LSTM模型预测股价(包含LSTM网络简介,代码数据均可下载)

前言 前几天在看论文&#xff0c;打算复现&#xff0c;论文用到了LSTM&#xff0c;故这一篇文章是小编学LSTM模型的学习笔记&#xff1b;LSTM感觉很复杂&#xff0c;但是结合代码构建神经网络&#xff0c;又感觉还行&#xff1b;本次学习的案例数据来源于GitHub&#xff0c;在…

4.4章节python中循环结构得互相嵌套:常用于属于图形(长方形、三角形、菱形)

一、定义和注意事项 在Python中&#xff0c;循环结构&#xff08;如for循环和while循环&#xff09;可以互相嵌套。嵌套循环意味着一个循环内部包含另一个循环。这在处理多维数据或需要执行多次迭代的任务时非常有用。 注意&#xff1a; 1.缩进&#xff1a;在Python中&…

实施威胁暴露管理、降低网络风险暴露的最佳实践

随着传统漏洞管理的发展&#xff0c;TEM 解决了因攻击面扩大和安全工具分散而产生的巨大风险。 主动式 TEM 方法优先考虑风险并与现有安全工具无缝集成&#xff0c;使组织能够在威胁被有效利用之前缓解威胁。 为什么威胁暴露管理 (TEM) 在现代网络安全策略中变得至关重要&…

商家营销工具架构升级总结

今年以来&#xff0c;商家营销工具业务需求井喷&#xff0c;需求数量多且耗时都比较长&#xff0c;技术侧面临很大的压力。因此这篇文章主要讨论营销工具前端要如何应对这样大规模的业务需求。 问题拆解 我们核心面对的问题主要如下&#xff1a; 1. 人力有限 我们除了要支撑存量…