【数学分析笔记】第4章第4节 复合函数求导法则及其应用(2)

4. 微分

4.4 复合函数求导法则及其应用

【例4.4.3】 y = e 1 + cos ⁡ x y=e^{\sqrt{1+\cos x}} y=e1+cosx ,求 y ′ y' y
【解】 y ′ = e 1 + cos ⁡ x ⋅ 1 2 1 + cos ⁡ x ⋅ ( − sin ⁡ x ) = − sin ⁡ x 2 1 + cos ⁡ x e 1 + cos ⁡ x y'=e^{\sqrt{1+\cos x}}\cdot\frac{1}{2\sqrt{1+\cos x}}\cdot(-\sin x)=-\frac{\sin x}{2\sqrt{1+\cos x}}e^{\sqrt{1+\cos x}} y=e1+cosx 21+cosx 1(sinx)=21+cosx sinxe1+cosx

4.4.2 幂指函数求导法则

y = f ( x ) = u ( x ) v ( x ) y=f(x)=u(x)^{v(x)} y=f(x)=u(x)v(x)
两边取对数得 ln ⁡ y = ln ⁡ f ( x ) = v ( x ) ln ⁡ u ( x ) \ln y=\ln f(x)=v(x)\ln u(x) lny=lnf(x)=v(x)lnu(x)
等式两边同时对 x x x求导得 1 y y ′ = 1 u ( x ) v ( x ) y ′ = v ′ ( x ) ln ⁡ u ( x ) + v ( x ) u ( x ) u ′ ( x ) \frac{1}{y}y'=\frac{1}{u(x)^{v(x)}}y'=v'(x)\ln u(x)+\frac{v(x)}{u(x)}u'(x) y1y=u(x)v(x)1y=v(x)lnu(x)+u(x)v(x)u(x)
y ′ ( x ) = u ( x ) v ( x ) ( v ′ ( x ) ln ⁡ u ( x ) + v ( x ) u ′ ( x ) u ( x ) ) y'(x)=u(x)^{v(x)}(v'(x)\ln u(x)+\frac{v(x)u'(x)}{u(x)}) y(x)=u(x)v(x)(v(x)lnu(x)+u(x)v(x)u(x))
【例】 y = ( sin ⁡ x ) cos ⁡ x y=(\sin x)^{\cos x} y=(sinx)cosx,求 y ′ y' y
【解】 ln ⁡ y = cos ⁡ x ln ⁡ ( sin ⁡ x ) \ln y=\cos x\ln(\sin x) lny=cosxln(sinx)
y ′ y = − sin ⁡ x ln ⁡ ( sin ⁡ x ) + cos ⁡ x 1 sin ⁡ x ⋅ cos ⁡ x \frac{y'}{y}=-\sin x\ln(\sin x)+\cos x\frac{1}{\sin x}\cdot \cos x yy=sinxln(sinx)+cosxsinx1cosx
y ′ = ( sin ⁡ x ) cos ⁡ x ( cos ⁡ 2 x sin ⁡ x − sin ⁡ x ln ⁡ ( sin ⁡ x ) ) y'=(\sin x)^{\cos x}(\frac{\cos ^2 x}{\sin x}-\sin x\ln(\sin x)) y=(sinx)cosx(sinxcos2xsinxln(sinx))

4.4.3 导数运算法则和微分运算法则


表要记住

4.4.4 一阶微分形式不变性

只有一阶微分有形式不变性

  • y = f ( u ) , y ′ ( u ) = f ′ ( u ) , d y = f ′ ( u ) d u , u y=f(u),y'(u)=f'(u),dy=f'(u)du,u y=f(u),y(u)=f(u),dy=f(u)du,u是自变量;
  • y = f ( u ) , u = g ( x ) , y = f ( g ( x ) ) , y ′ ( x ) = f ′ ( u ) g ′ ( x ) = f ′ ( g ( x ) ) g ′ ( x ) , d y = f ′ ( g ( x ) ) g ′ ( x ) d x = f ′ ( g ( x ) ) d g ( x ) = f ′ ( u ) d u , u y=f(u),u=g(x),y=f(g(x)),y'(x)=f'(u)g'(x)=f'(g(x))g'(x),dy = f'(g(x))g'(x)dx=f'(g(x))dg(x)=f'(u)du,u y=f(u),u=g(x),y=f(g(x)),y(x)=f(u)g(x)=f(g(x))g(x),dy=f(g(x))g(x)dx=f(g(x))dg(x)=f(u)du,u是中间变量;

不管 u u u是自变量还是中间变量,都有一个式子成立即 d y = f ′ ( u ) d u dy=f'(u)du dy=f(u)du,这就叫做一阶微分的形式不变性

4.4.5 隐函数得求导与求微分

隐函数的表达式: F ( x , y ) = 0 F(x,y)=0 F(x,y)=0
【例】 x 2 a 2 + y 2 b 2 = 1 \frac{x^2}{a^2}+\frac{y^2}{b^2}=1 a2x2+b2y2=1,限定 y > 0 y>0 y>0就是上半椭圆, y < 0 y<0 y<0就是下半椭圆,求微分。
d ( x 2 a 2 + y 2 b 2 ) = 0 d(\frac{x^2}{a^2}+\frac{y^2}{b^2})=0 d(a2x2+b2y2)=0
1 a 2 2 x d x + 1 b 2 2 y d y = 0 \frac{1}{a^2}2xdx+\frac{1}{b^2}2ydy=0 a212xdx+b212ydy=0
亦即 d y = − b 2 a 2 ⋅ x y d x dy=-\frac{b^2}{a^2}\cdot\frac{x}{y}dx dy=a2b2yxdx
所以 d y d x = − b 2 a 2 ⋅ x y \frac{dy}{dx}=-\frac{b^2}{a^2}\cdot\frac{x}{y} dxdy=a2b2yx
【例4.4.5】 e x y + x 2 y − 1 = 0 e^{xy}+x^2y-1=0 exy+x2y1=0,求 y ′ . y'. y.
【解】它的显函数写不出来,用隐函数求导法则
左右两边对 x x x求导
d d x ( e x y + x 2 y − 1 ) = 0 \frac{d}{dx}(e^{xy}+x^2y-1)=0 dxd(exy+x2y1)=0
e x y ( y + x y ′ ) + 2 x y + x 2 y ′ = 0 e^{xy}(y+xy')+2xy+x^2y'=0 exy(y+xy)+2xy+x2y=0
y ′ ( x ) = − 2 x y + y e x y x e x y + x 2 = − ( e x y + 2 x ) y ( e x y + x ) x y'(x)=-\frac{2xy+ye^{xy}}{xe^{xy}+x^2}=-\frac{\left(\mathrm{e}^{x y}+2 x\right) y}{\left(\mathrm{e}^{x y}+x\right) x} y(x)=xexy+x22xy+yexy=(exy+x)x(exy+2x)y


【例4.4.6】 sin ⁡ y 2 = cos ⁡ x \sin y^2=\cos \sqrt{x} siny2=cosx ,求 y ′ y' y
【解】等式两边同时求微分得
2 y cos ⁡ y 2 d y = − sin ⁡ x ⋅ 1 2 x d x 2y\cos y^2 dy=-\sin\sqrt{x}\cdot\frac{1}{2\sqrt{x}}dx 2ycosy2dy=sinx 2x 1dx
由一阶微分的形式不变性
y ′ = d y d x = − sin ⁡ x 4 y ( cos ⁡ y 2 ) x y' =\frac{dy}{dx}=-\frac{\sin\sqrt{x}}{4y(\cos y^2) \sqrt{x}} y=dxdy=4y(cosy2)x sinx


【例4.4.7】 e x + y − x y − e = 0 e^{x+y}-xy-e=0 ex+yxye=0几何上表示平面上一条曲线, ( 0 , 1 ) (0,1) (0,1)在曲线上,求过 ( 0 , 1 ) (0,1) (0,1)的切线方程。
【解】等式两边求导得 e x + y ( 1 + y ′ ) − y − x y ′ = 0 e^{x+y}(1+y')-y-xy'=0 ex+y(1+y)yxy=0
y ′ ( x ) = y − e x + y e x + y − x y'(x)=\frac{y-e^{x+y}}{e^{x+y}-x} y(x)=ex+yxyex+y
( 0 , 1 ) (0,1) (0,1)代入 y ′ ( x ) y'(x) y(x),则 y ′ ( 0 ) = 1 − e 1 e 1 − 0 = 1 − e e y'(0)=\frac{1-e^{1}}{e^{1}-0}=\frac{1-e}{e} y(0)=e101e1=e1e
则切线方程为 y − 1 = 1 − e e x y-1=\frac{1-e}{e}x y1=e1ex

4.4.6 归纳

(1) y = 1 g ( x ) , y ′ = − g ′ ( x ) g 2 ( x ) y=\frac{1}{g(x)},y'=-\frac{g'(x)}{g^2(x)} y=g(x)1,y=g2(x)g(x),也可以看成 y = 1 u , u = g ( x ) , y ′ = − 1 u 2 g ′ ( x ) = − g ′ ( x ) g 2 ( x ) y=\frac{1}{u},u=g(x),y'=-\frac{1}{u^2}g'(x)=-\frac{g'(x)}{g^2(x)} y=u1,u=g(x),y=u21g(x)=g2(x)g(x)
(2) y = f ( x ) , x = f − 1 ( y ) , f − 1 ( f ( x ) ) = x y=f(x),x=f^{-1}(y),f^{-1}(f(x))=x y=f(x),x=f1(y),f1(f(x))=x
等式 f − 1 ( f ( x ) ) = x f^{-1}(f(x))=x f1(f(x))=x两边对 x x x求导得 1 = ( f − 1 ( y ) ) ′ f ′ ( x ) 1=(f^{-1}(y))'f'(x) 1=(f1(y))f(x),所以 f − 1 ( y ) ) ′ = 1 f ′ ( x ) f^{-1}(y))'=\frac{1}{f'(x)} f1(y))=f(x)1

4.4.7 函数的参数表示(参数方程)求导

{ x = φ ( t ) , y = ψ ( t ) , α ⩽ t ⩽ β \left\{\begin{array}{l} x=\varphi(t), \\ y=\psi(t), \end{array} \quad \alpha \leqslant t \leqslant \beta\right. {x=φ(t),y=ψ(t),αtβ φ , ψ \varphi,\psi φ,ψ都可导, φ \varphi φ严格单调且 φ ′ ( t ) ≠ 0 \varphi'(t)\ne 0 φ(t)=0
由反函数的可导定理, t = φ − 1 ( x ) , y = ψ ( φ − 1 ( x ) ) t=\varphi^{-1}(x),y=\psi(\varphi^{-1}(x)) t=φ1(x),y=ψ(φ1(x))
d y d x = ψ ′ ( φ − 1 ( x ) ) ( φ − 1 ( x ) ) ′ = ψ ′ ( φ − 1 ( x ) ) φ ′ ( t ) = ψ ′ ( t ) φ ′ ( t ) \frac{dy}{dx}=\psi'(\varphi^{-1}(x))(\varphi^{-1}(x))'=\frac{\psi'(\varphi^{-1}(x))}{\varphi'(t)}=\frac{\psi'(t)}{\varphi'(t)} dxdy=ψ(φ1(x))(φ1(x))=φ(t)ψ(φ1(x))=φ(t)ψ(t)
实际上也可以从微分公式(一阶微分形式的不变性)出发推出来
{ d x = φ ′ ( t ) d t , d y = ψ ′ ( t ) d t , \left\{\begin{array}{l} dx=\varphi'(t)dt, \\ dy=\psi'(t)dt, \end{array} \right. {dx=φ(t)dt,dy=ψ(t)dt,,即 d y d x = ψ ′ ( t ) φ ′ ( t ) \frac{dy}{dx}=\frac{\psi'(t)}{\varphi'(t)} dxdy=φ(t)ψ(t)
【例】【旋轮线(摆线)】 { x = t − sin ⁡ t , y = 1 − cos ⁡ t , 0 ⩽ t ⩽ π \left\{\begin{array}{l} x=t-\sin t, \\ y=1-\cos t, \end{array} \quad 0 \leqslant t \leqslant \pi\right. {x=tsint,y=1cost,0tπ,求 d y d x \frac{dy}{dx} dxdy
【解】 d y d x = sin ⁡ t 1 − cos ⁡ t \frac{dy}{dx}=\frac{\sin t}{1-\cos t} dxdy=1costsint

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/439046.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

JavaScript 中最快的循环是什么?

无论使用哪种编程语言&#xff0c;循环都是一种内置功能。JavaScript 也不例外&#xff0c;它提供了多种实现循环的方法&#xff0c;偶尔会给开发人员带来困惑&#xff1a;哪一种循环才是最快的&#xff1f; 以下是Javascript中可以实现循环的方法&#xff1a; For Loop While …

Pikachu- Over Permission-垂直越权

以admin 账号登陆&#xff0c;添加一个用户&#xff1b; 把添加用户的这个请求发送到 repeater&#xff1b; 退出admin&#xff0c;使用普通用户pikachu登陆&#xff1b; 只有查看权限&#xff1b; 使用pikachu 用户的认证信息&#xff0c;替换repeater处管理员创建用户请求的…

0基础学前端 day6 -- 搭建github pages静态网址

标题&#xff1a;如何通过 GitHub Pages 创建一个静态网站 GitHub Pages 是 GitHub 提供的一项免费服务&#xff0c;允许用户从 GitHub 仓库中托管静态网站。对于开发者和非开发者来说&#xff0c;这都是一个极其便利的工具&#xff0c;用于创建和发布个人博客、项目文档或作品…

Redis中GEO数据结构实现附近商户搜索

Redis的版本必须是6.2以上 在测试类中将数据导入Redis Testvoid loadShopData(){//1.查询店铺信息List<Shop> list shopService.list();//2.把店铺分组&#xff0c;按照typeId分组&#xff0c;typeId一致的放到一个集合Map<Long, List<Shop>> map list.s…

在vscode在使用idea编辑器的快捷键

在vscode在使用idea编辑器的快捷键 在vscode扩展在搜索idea key结果如下&#xff1a; 选择IntelliJ IDEA Keybindings安装&#xff08;注意作者是Keisuke Kato&#xff09;&#xff0c;安装后就可以在vscode编辑器中使用idea编辑器的快捷键。

五子棋双人对战项目(2)——登录模块

目录 一、数据库模块 1、创建数据库 2、使用MyBatis连接并操作数据库 编写后端数据库代码 二、约定前后端交互接口 三、后端代码编写 文件路径如下&#xff1a; UserAPI&#xff1a; UserMapper&#xff1a; 四、前端代码 登录页面 login.html&#xff1a; 注册页面…

ZenStack全栈开发工具(一)快速使用指南

简介 ZenStack是一个TypeScript工具&#xff0c;通过灵活的授权和自动生成的类型安全的 API/钩子来增强 Prisma ORM&#xff0c;从而简化全栈开发 数据库-》应用接口 数据库-》前端 参考官方网站&#xff1a;https://zenstack.dev/ 如果我们想做一个全栈开发的web应用程序&am…

记一次教学版内网渗透流程

信息收集 如果觉得文章写的不错可以共同交流 http://aertyxqdp1.target.yijinglab.com/dirsearch dirsearch -u "http://aertyxqdp1.target.yijinglab.com/"发现 http://aertyxqdp1.target.yijinglab.com/joomla/http://aertyxqdp1.target.yijinglab.com/phpMyA…

算法笔记(九)——栈

文章目录 删除字符串中的所有相邻重复项比较含退格的字符串基本计算机II字符串解码验证栈序列 栈是一种先进后出的数据结构&#xff0c;其操作主要有 进栈、压栈&#xff08;Push&#xff09; 出栈&#xff08;Pop&#xff09; 常见的使用栈的算法题 中缀转后缀逆波兰表达式求…

大学生就业市场:Spring Boot招聘系统的设计与实现

4系统概要设计 4.1概述 本系统采用B/S结构(Browser/Server,浏览器/服务器结构)和基于Web服务两种模式&#xff0c;是一个适用于Internet环境下的模型结构。只要用户能连上Internet,便可以在任何时间、任何地点使用。系统工作原理图如图4-1所示&#xff1a; 图4-1系统工作原理…

MySQL中NULL值是否会影响索引的使用

MySQL中NULL值是否会影响索引的使用 为何写这一篇文章 &#x1f42d;&#x1f42d;在面试的时候被问到NULL值是否会走索引的时候&#xff0c;感到有点不理解&#xff0c;于是事后就有了这篇文章 问题&#xff1a; 为name建立索引&#xff0c;name可以为空select * from user …

OpenHarmony标准系统上实现对rk系列芯片NPU的支持(npu使用)

在上篇文章中&#xff0c;我们学习了移植rk的npu驱动到OpenHarmony提供的内核。本文我们来学习如何在OpenHarmony标准系统rk系列芯片如何使用npu OpenHarmony RK系列芯片运行npu测试用例 在移植npu驱动到OpenHarmony之后&#xff0c;来运行npu样例进行简单测试 1.O 测试准备…

ModuleNotFoundError: No module named ‘package‘

报错&#xff1a; Traceback (most recent call last): File “”, line 198, in run_module_as_main File “”, line 88, in run_code File "D:\python\helloworld.venv\Scripts\pip.exe_main.py", line 4, in File "D:\python\helloworld.venv\Lib\site-pac…

昇思学习打卡营第32天|基于ResNet50的中药炮制饮片质量判断模型

背景介绍 中药炮制是根据中医药理论&#xff0c;依照临床用药需求&#xff0c;通过调剂和制剂要求&#xff0c;将中药材制备成中药饮片的过程。老百姓日常使用的中药饮片&#xff0c;是中药炮制技术的成果。中药炮制过程中&#xff0c;尤其是涉及到水火处理时&#xff0c;必须注…

电器自动化入门08:隔离变压器、行程开关介绍及选型

视频链接&#xff1a;3.4 电工知识&#xff1a;三相交流异步电动机自动往返行程控制及控制变压器选型_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1PJ41117PW?p8&vd_sourceb5775c3a4ea16a5306db9c7c1c1486b5 1.隔离&#xff08;控制&#xff09;变压器 2.行程开…

【AI】AIOT简介

随着技术的快速发展&#xff0c;人工智能AI和物联网IoT已经成为当今最热门的技术领域。AIOT是人工智能和物联网的结合&#xff0c;使物联网设备更加智能化&#xff0c;能够进行自主决策和学习的技术。 通过物联网产生、收集来自不同维度的、海量的数据存储于云端、边缘端&#…

828华为云征文|部署个人文档管理系统 Docspell

828华为云征文&#xff5c;部署个人文档管理系统 Docspell 一、Flexus云服务器X实例介绍二、Flexus云服务器X实例配置2.1 重置密码2.2 服务器连接2.3 安全组配置2.4 Docker 环境搭建 三、Flexus云服务器X实例部署 Docspell3.1 Docspell 介绍3.2 Docspell 部署3.3 Docspell 使用…

深度学习基础—目标定位与特征点检测

1.目标定位 &#xff08;1&#xff09;定义 目标定位就是在图片中&#xff0c;定位对象的位置&#xff0c;对于对象的位置可以用框圈住显示。如下图所示&#xff1a; 假设正在进行图片分类工作&#xff0c;那么这个汽车图片很有可能被分类为汽车类别。对于目标定位&#xff0c;…

螺蛳壳里做道场:老破机搭建的私人数据中心---Centos下Docker学习01(环境准备)

1 准备工作 由于创建数据中心需要安装很多服务器&#xff0c;这些服务器要耗费很所物理物理计算资源、存储资源、网络资源和软件资源&#xff0c;作为穷学生只有几百块的n手笔记本&#xff0c;不可能买十几台服务器来搭建数据中心&#xff0c;也不愿意跑实验室&#xff0c;想躺…

Pikachu-Cross-Site Scripting-xss之htmlspecialchars

首先输入各种字符 查看页面元素&#xff0c;可以看到这里对一些符号做了转换&#xff0c;但是 单引号等几个符号没处理&#xff1b; 从代码上看&#xff1b;使用单引号做闭合&#xff1b; 构造payload a onclickalert(11) 提交&#xff0c;得到xss攻击