深度学习每周学习总结J1(ResNet-50算法实战与解析 - 鸟类识别)

  • 🍨 本文为🔗365天深度学习训练营 中的学习记录博客
  • 🍖 原作者:K同学啊 | 接辅导、项目定制

目录

      • 0. 总结
      • 1. 设置GPU
      • 2. 导入数据及处理部分
      • 3. 划分数据集
      • 4. 模型构建部分
      • 5. 设置超参数:定义损失函数,学习率,以及根据学习率定义优化器等
      • 6. 训练函数
      • 7. 测试函数
      • 7. 正式训练
      • 9. 结果可视化
      • 10. 模型的保存
      • 11. 使用训练好的模型进行预测

0. 总结

数据导入及处理部分:本次数据导入没有使用torchvision自带的数据集,需要将原始数据进行处理包括数据导入,查看数据分类情况,定义transforms,进行数据类型转换等操作。

划分数据集:划定训练集测试集后,再使用torch.utils.data中的DataLoader()分别加载上一步处理好的训练及测试数据,查看批处理维度.

模型构建部分:resnet-50

设置超参数:在这之前需要定义损失函数,学习率(动态学习率),以及根据学习率定义优化器(例如SGD随机梯度下降),用来在训练中更新参数,最小化损失函数。

定义训练函数:函数的传入的参数有四个,分别是设置好的DataLoader(),定义好的模型,损失函数,优化器。函数内部初始化损失准确率为0,接着开始循环,使用DataLoader()获取一个批次的数据,对这个批次的数据带入模型得到预测值,然后使用损失函数计算得到损失值。接下来就是进行反向传播以及使用优化器优化参数,梯度清零放在反向传播之前或者是使用优化器优化之后都是可以的,一般是默认放在反向传播之前。

定义测试函数:函数传入的参数相比训练函数少了优化器,只需传入设置好的DataLoader(),定义好的模型,损失函数。此外除了处理批次数据时无需再设置梯度清零、返向传播以及优化器优化参数,其余部分均和训练函数保持一致。

训练过程:定义训练次数,有几次就使用整个数据集进行几次训练,初始化四个空list分别存储每次训练及测试的准确率及损失。使用model.train()开启训练模式,调用训练函数得到准确率及损失。使用model.eval()将模型设置为评估模式,调用测试函数得到准确率及损失。接着就是将得到的训练及测试的准确率及损失存储到相应list中并合并打印出来,得到每一次整体训练后的准确率及损失。

结果可视化

模型的保存,调取及使用。在PyTorch中,通常使用 torch.save(model.state_dict(), ‘model.pth’) 保存模型的参数,使用 model.load_state_dict(torch.load(‘model.pth’)) 加载参数。

需要改进优化的地方:在保证整体流程没有问题的情况下,继续细化细节研究,比如一些函数的原理及作用,如何提升训练集准确率等问题。

import torch
import torch.nn as nn
import torchvision
from torchvision import datasets,transforms
from torch.utils.data import DataLoader
import torchvision.models as models
import torch.nn.functional as Fimport os,PIL,pathlib
import matplotlib.pyplot as plt
import warningswarnings.filterwarnings('ignore') # 忽略警告信息plt.rcParams['font.sans-serif'] = ['SimHei'] # 用来正常显示中文标签
plt.rcParams['axes.unicode_minus'] = False   # 用来正常显示负号
plt.rcParams['figure.dpi'] = 100 # 分辨率

1. 设置GPU

device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
device
device(type='cuda')

2. 导入数据及处理部分

# 获取数据分布情况
path_dir = './data/bird_photos/'
path_dir = pathlib.Path(path_dir)paths = list(path_dir.glob('*'))
# classNames = [str(path).split("\\")[-1] for path in paths] # ['Bananaquit', 'Black Skimmer', 'Black Throated Bushtiti', 'Cockatoo']
classNames = [path.parts[-1] for path in paths]
classNames
['Bananaquit', 'Black Skimmer', 'Black Throated Bushtiti', 'Cockatoo']
# 定义transforms 并处理数据
train_transforms = transforms.Compose([transforms.Resize([224,224]),      # 将输入图片resize成统一尺寸transforms.RandomHorizontalFlip(), # 随机水平翻转transforms.ToTensor(),             # 将PIL Image 或 numpy.ndarray 装换为tensor,并归一化到[0,1]之间transforms.Normalize(              # 标准化处理 --> 转换为标准正太分布(高斯分布),使模型更容易收敛mean = [0.485,0.456,0.406],    # 其中 mean=[0.485,0.456,0.406]与std=[0.229,0.224,0.225] 从数据集中随机抽样计算得到的。std = [0.229,0.224,0.225])
])
test_transforms = transforms.Compose([transforms.Resize([224,224]),transforms.ToTensor(),transforms.Normalize(mean = [0.485,0.456,0.406],std = [0.229,0.224,0.225])
])
total_data = datasets.ImageFolder('./data/bird_photos/',transform = train_transforms)
total_data
Dataset ImageFolderNumber of datapoints: 565Root location: ./data/bird_photos/StandardTransform
Transform: Compose(Resize(size=[224, 224], interpolation=bilinear, max_size=None, antialias=True)RandomHorizontalFlip(p=0.5)ToTensor()Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]))
total_data.class_to_idx
{'Bananaquit': 0,'Black Skimmer': 1,'Black Throated Bushtiti': 2,'Cockatoo': 3}

3. 划分数据集

# 划分数据集
train_size = int(len(total_data) * 0.8)
test_size = len(total_data) - train_sizetrain_dataset,test_dataset = torch.utils.data.random_split(total_data,[train_size,test_size])
train_dataset,test_dataset
(<torch.utils.data.dataset.Subset at 0x23b545994b0>,<torch.utils.data.dataset.Subset at 0x23b54599300>)
# 定义DataLoader用于数据集的加载batch_size = 32train_dl = torch.utils.data.DataLoader(train_dataset,batch_size = batch_size,shuffle = True,num_workers = 1
)
test_dl = torch.utils.data.DataLoader(test_dataset,batch_size = batch_size,shuffle = True,num_workers = 1
)
# 观察数据维度
for X,y in test_dl:print("Shape of X [N,C,H,W]: ",X.shape)print("Shape of y: ", y.shape,y.dtype)break
Shape of X [N,C,H,W]:  torch.Size([32, 3, 224, 224])
Shape of y:  torch.Size([32]) torch.int64

4. 模型构建部分

import torch
import torch.nn as nn
import torch.nn.functional as Fclass ConvBlock(nn.Module):def __init__(self, in_channels, filters, kernel_size, strides=1):super(ConvBlock, self).__init__()filters1, filters2, filters3 = filtersself.conv1 = nn.Conv2d(in_channels, filters1, kernel_size=1, stride=strides)self.bn1 = nn.BatchNorm2d(filters1)self.conv2 = nn.Conv2d(filters1, filters2, kernel_size=kernel_size, padding=1)self.bn2 = nn.BatchNorm2d(filters2)self.conv3 = nn.Conv2d(filters2, filters3, kernel_size=1)self.bn3 = nn.BatchNorm2d(filters3)self.shortcut = nn.Sequential()if in_channels != filters3 or strides != 1:self.shortcut = nn.Sequential(nn.Conv2d(in_channels, filters3, kernel_size=1, stride=strides),nn.BatchNorm2d(filters3))def forward(self, x):shortcut = self.shortcut(x)x = F.relu(self.bn1(self.conv1(x)))x = F.relu(self.bn2(self.conv2(x)))x = self.bn3(self.conv3(x))x += shortcutx = F.relu(x)return xclass ResNet50(nn.Module):def __init__(self, num_classes=1000):super(ResNet50, self).__init__()self.pad = nn.ZeroPad2d(3)self.conv1 = nn.Conv2d(3, 64, kernel_size=7, stride=2, padding=3)self.bn1 = nn.BatchNorm2d(64)self.maxpool = nn.MaxPool2d(kernel_size=3, stride=2, padding=1)# Define block layers with appropriate strides and filter sizesself.layer1 = self._build_layer(64, [64, 64, 256], blocks=3, strides=1)self.layer2 = self._build_layer(256, [128, 128, 512], blocks=4, strides=2)self.layer3 = self._build_layer(512, [256, 256, 1024], blocks=6, strides=2)self.layer4 = self._build_layer(1024, [512, 512, 2048], blocks=3, strides=2)self.avgpool = nn.AdaptiveAvgPool2d((1, 1))self.fc = nn.Linear(2048, num_classes)def _build_layer(self, in_channels, filters, blocks, strides=1):layers = []# Add the first block with potential downsampling (by strides)layers.append(ConvBlock(in_channels, filters, kernel_size=3, strides=strides))in_channels = filters[-1]# Add the additional blocks in this layer without downsamplingfor _ in range(1, blocks):layers.append(ConvBlock(in_channels, filters, kernel_size=3, strides=1))return nn.Sequential(*layers)def forward(self, x):x = self.pad(x)x = F.relu(self.bn1(self.conv1(x)))x = self.maxpool(x)x = self.layer1(x)x = self.layer2(x)x = self.layer3(x)x = self.layer4(x)x = self.avgpool(x)x = torch.flatten(x, 1)x = self.fc(x)return x# Ensure the model uses the correct device
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
model = ResNet50()
model.to(device)
ResNet50((pad): ZeroPad2d((3, 3, 3, 3))(conv1): Conv2d(3, 64, kernel_size=(7, 7), stride=(2, 2), padding=(3, 3))(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(maxpool): MaxPool2d(kernel_size=3, stride=2, padding=1, dilation=1, ceil_mode=False)(layer1): Sequential((0): ConvBlock((conv1): Conv2d(64, 64, kernel_size=(1, 1), stride=(1, 1))(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(shortcut): Sequential((0): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))(1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): ConvBlock((conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(shortcut): Sequential())(2): ConvBlock((conv1): Conv2d(256, 64, kernel_size=(1, 1), stride=(1, 1))(bn1): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(64, 64, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(bn2): BatchNorm2d(64, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(64, 256, kernel_size=(1, 1), stride=(1, 1))(bn3): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(shortcut): Sequential()))(layer2): Sequential((0): ConvBlock((conv1): Conv2d(256, 128, kernel_size=(1, 1), stride=(2, 2))(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(shortcut): Sequential((0): Conv2d(256, 512, kernel_size=(1, 1), stride=(2, 2))(1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): ConvBlock((conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(shortcut): Sequential())(2): ConvBlock((conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(shortcut): Sequential())(3): ConvBlock((conv1): Conv2d(512, 128, kernel_size=(1, 1), stride=(1, 1))(bn1): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(128, 128, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(bn2): BatchNorm2d(128, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(128, 512, kernel_size=(1, 1), stride=(1, 1))(bn3): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(shortcut): Sequential()))(layer3): Sequential((0): ConvBlock((conv1): Conv2d(512, 256, kernel_size=(1, 1), stride=(2, 2))(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1))(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(shortcut): Sequential((0): Conv2d(512, 1024, kernel_size=(1, 1), stride=(2, 2))(1): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): ConvBlock((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1))(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(shortcut): Sequential())(2): ConvBlock((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1))(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(shortcut): Sequential())(3): ConvBlock((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1))(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(shortcut): Sequential())(4): ConvBlock((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1))(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(shortcut): Sequential())(5): ConvBlock((conv1): Conv2d(1024, 256, kernel_size=(1, 1), stride=(1, 1))(bn1): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(256, 256, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(bn2): BatchNorm2d(256, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(256, 1024, kernel_size=(1, 1), stride=(1, 1))(bn3): BatchNorm2d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(shortcut): Sequential()))(layer4): Sequential((0): ConvBlock((conv1): Conv2d(1024, 512, kernel_size=(1, 1), stride=(2, 2))(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1))(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(shortcut): Sequential((0): Conv2d(1024, 2048, kernel_size=(1, 1), stride=(2, 2))(1): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)))(1): ConvBlock((conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1))(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1))(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(shortcut): Sequential())(2): ConvBlock((conv1): Conv2d(2048, 512, kernel_size=(1, 1), stride=(1, 1))(bn1): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv2): Conv2d(512, 512, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1))(bn2): BatchNorm2d(512, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(conv3): Conv2d(512, 2048, kernel_size=(1, 1), stride=(1, 1))(bn3): BatchNorm2d(2048, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)(shortcut): Sequential()))(avgpool): AdaptiveAvgPool2d(output_size=(1, 1))(fc): Linear(in_features=2048, out_features=1000, bias=True)
)

5. 设置超参数:定义损失函数,学习率,以及根据学习率定义优化器等

# loss_fn = nn.CrossEntropyLoss() # 创建损失函数# learn_rate = 1e-3 # 初始学习率
# def adjust_learning_rate(optimizer,epoch,start_lr):
#     # 每两个epoch 衰减到原来的0.98
#     lr = start_lr * (0.92 ** (epoch//2))
#     for param_group in optimizer.param_groups:
#         param_group['lr'] = lr# optimizer = torch.optim.Adam(model.parameters(),lr=learn_rate)
# 调用官方接口示例
loss_fn = nn.CrossEntropyLoss()learn_rate = 1e-4
lambda1 = lambda epoch:(0.92**(epoch//2))optimizer = torch.optim.Adam(model.parameters(),lr = learn_rate)
scheduler = torch.optim.lr_scheduler.LambdaLR(optimizer,lr_lambda=lambda1) # 选定调整方法

6. 训练函数

# 训练函数
def train(dataloader,model,loss_fn,optimizer):size = len(dataloader.dataset) # 训练集大小num_batches = len(dataloader) # 批次数目train_loss,train_acc = 0,0for X,y in dataloader:X,y = X.to(device),y.to(device)# 计算预测误差pred = model(X)loss = loss_fn(pred,y)# 反向传播optimizer.zero_grad()loss.backward()optimizer.step()# 记录acc与losstrain_acc += (pred.argmax(1)==y).type(torch.float).sum().item()train_loss += loss.item()train_acc /= sizetrain_loss /= num_batchesreturn train_acc,train_loss

7. 测试函数

# 测试函数
def test(dataloader,model,loss_fn):size = len(dataloader.dataset)num_batches = len(dataloader)test_acc,test_loss = 0,0with torch.no_grad():for X,y in dataloader:X,y = X.to(device),y.to(device)# 计算losspred = model(X)loss = loss_fn(pred,y)test_acc += (pred.argmax(1)==y).type(torch.float).sum().item()test_loss += loss.item()test_acc /= sizetest_loss /= num_batchesreturn test_acc,test_loss

7. 正式训练

import copyepochs = 40train_acc = []
train_loss = []
test_acc = []
test_loss = []best_acc = 0.0for epoch in range(epochs):# 更新学习率——使用自定义学习率时使用# adjust_learning_rate(optimizer,epoch,learn_rate)model.train()epoch_train_acc,epoch_train_loss = train(train_dl,model,loss_fn,optimizer)scheduler.step() # 更新学习率——调用官方动态学习率时使用model.eval()epoch_test_acc,epoch_test_loss = test(test_dl,model,loss_fn)# 保存最佳模型到 best_modelif epoch_test_acc > best_acc:best_acc = epoch_test_accbest_model = copy.deepcopy(model)train_acc.append(epoch_train_acc)train_loss.append(epoch_train_loss)test_acc.append(epoch_test_acc)test_loss.append(epoch_test_loss)# 获取当前学习率lr = optimizer.state_dict()['param_groups'][0]['lr']template = ('Epoch:{:2d},Train_acc:{:.1f}%,Train_loss:{:.3f},Test_acc:{:.1f}%,Test_loss:{:.3f},Lr:{:.2E}')print(template.format(epoch+1,epoch_train_acc*100,epoch_train_loss,epoch_test_acc*100,epoch_test_loss,lr))print('Done')
Epoch: 1,Train_acc:35.4%,Train_loss:3.431,Test_acc:23.9%,Test_loss:3.033,Lr:1.00E-04
Epoch: 2,Train_acc:69.2%,Train_loss:0.899,Test_acc:26.5%,Test_loss:3.017,Lr:9.20E-05
Epoch: 3,Train_acc:74.1%,Train_loss:0.652,Test_acc:59.3%,Test_loss:1.278,Lr:9.20E-05
Epoch: 4,Train_acc:78.3%,Train_loss:0.587,Test_acc:67.3%,Test_loss:1.353,Lr:8.46E-05
Epoch: 5,Train_acc:82.5%,Train_loss:0.521,Test_acc:75.2%,Test_loss:0.829,Lr:8.46E-05
Epoch: 6,Train_acc:86.3%,Train_loss:0.433,Test_acc:66.4%,Test_loss:1.308,Lr:7.79E-05
Epoch: 7,Train_acc:90.3%,Train_loss:0.340,Test_acc:67.3%,Test_loss:1.600,Lr:7.79E-05
Epoch: 8,Train_acc:89.2%,Train_loss:0.374,Test_acc:71.7%,Test_loss:1.014,Lr:7.16E-05
Epoch: 9,Train_acc:88.7%,Train_loss:0.305,Test_acc:77.0%,Test_loss:0.841,Lr:7.16E-05
Epoch:10,Train_acc:90.7%,Train_loss:0.309,Test_acc:79.6%,Test_loss:1.094,Lr:6.59E-05
Epoch:11,Train_acc:91.8%,Train_loss:0.318,Test_acc:72.6%,Test_loss:0.976,Lr:6.59E-05
Epoch:12,Train_acc:93.6%,Train_loss:0.243,Test_acc:73.5%,Test_loss:1.209,Lr:6.06E-05
Epoch:13,Train_acc:94.7%,Train_loss:0.159,Test_acc:71.7%,Test_loss:0.947,Lr:6.06E-05
Epoch:14,Train_acc:98.0%,Train_loss:0.076,Test_acc:80.5%,Test_loss:0.707,Lr:5.58E-05
Epoch:15,Train_acc:97.8%,Train_loss:0.083,Test_acc:79.6%,Test_loss:0.923,Lr:5.58E-05
Epoch:16,Train_acc:98.2%,Train_loss:0.059,Test_acc:82.3%,Test_loss:0.650,Lr:5.13E-05
Epoch:17,Train_acc:98.5%,Train_loss:0.072,Test_acc:76.1%,Test_loss:0.828,Lr:5.13E-05
Epoch:18,Train_acc:98.0%,Train_loss:0.175,Test_acc:78.8%,Test_loss:0.834,Lr:4.72E-05
Epoch:19,Train_acc:94.2%,Train_loss:0.173,Test_acc:61.9%,Test_loss:2.606,Lr:4.72E-05
Epoch:20,Train_acc:96.2%,Train_loss:0.123,Test_acc:77.9%,Test_loss:0.959,Lr:4.34E-05
Epoch:21,Train_acc:96.5%,Train_loss:0.166,Test_acc:76.1%,Test_loss:1.266,Lr:4.34E-05
Epoch:22,Train_acc:96.9%,Train_loss:0.196,Test_acc:85.0%,Test_loss:0.698,Lr:4.00E-05
Epoch:23,Train_acc:98.7%,Train_loss:0.082,Test_acc:82.3%,Test_loss:0.626,Lr:4.00E-05
Epoch:24,Train_acc:96.0%,Train_loss:0.136,Test_acc:81.4%,Test_loss:0.805,Lr:3.68E-05
Epoch:25,Train_acc:98.5%,Train_loss:0.101,Test_acc:83.2%,Test_loss:0.576,Lr:3.68E-05
Epoch:26,Train_acc:98.5%,Train_loss:0.062,Test_acc:80.5%,Test_loss:0.597,Lr:3.38E-05
Epoch:27,Train_acc:99.6%,Train_loss:0.039,Test_acc:83.2%,Test_loss:0.574,Lr:3.38E-05
Epoch:28,Train_acc:99.3%,Train_loss:0.080,Test_acc:85.0%,Test_loss:0.758,Lr:3.11E-05
Epoch:29,Train_acc:99.6%,Train_loss:0.059,Test_acc:84.1%,Test_loss:0.608,Lr:3.11E-05
Epoch:30,Train_acc:98.9%,Train_loss:0.054,Test_acc:82.3%,Test_loss:0.753,Lr:2.86E-05
Epoch:31,Train_acc:98.9%,Train_loss:0.035,Test_acc:83.2%,Test_loss:0.617,Lr:2.86E-05
Epoch:32,Train_acc:98.7%,Train_loss:0.046,Test_acc:78.8%,Test_loss:0.847,Lr:2.63E-05
Epoch:33,Train_acc:98.9%,Train_loss:0.028,Test_acc:82.3%,Test_loss:0.746,Lr:2.63E-05
Epoch:34,Train_acc:99.6%,Train_loss:0.032,Test_acc:79.6%,Test_loss:0.629,Lr:2.42E-05
Epoch:35,Train_acc:99.3%,Train_loss:0.027,Test_acc:82.3%,Test_loss:0.597,Lr:2.42E-05
Epoch:36,Train_acc:99.6%,Train_loss:0.029,Test_acc:87.6%,Test_loss:0.488,Lr:2.23E-05
Epoch:37,Train_acc:99.6%,Train_loss:0.026,Test_acc:87.6%,Test_loss:0.552,Lr:2.23E-05
Epoch:38,Train_acc:99.1%,Train_loss:0.029,Test_acc:79.6%,Test_loss:0.572,Lr:2.05E-05
Epoch:39,Train_acc:99.8%,Train_loss:0.107,Test_acc:84.1%,Test_loss:0.704,Lr:2.05E-05
Epoch:40,Train_acc:99.1%,Train_loss:0.094,Test_acc:76.1%,Test_loss:0.772,Lr:1.89E-05
Done

9. 结果可视化

epochs_range = range(epochs)plt.figure(figsize = (12,3))plt.subplot(1,2,1)
plt.plot(epochs_range,train_acc,label = 'Training Accuracy')
plt.plot(epochs_range,test_acc,label = 'Test Accuracy')
plt.legend(loc = 'lower right')
plt.title('Training and Validation Accuracy')plt.subplot(1,2,2)
plt.plot(epochs_range,train_loss,label = 'Test Accuracy')
plt.plot(epochs_range,test_loss,label = 'Test Loss')
plt.legend(loc = 'lower right')
plt.title('Training and validation Loss')
plt.show()

在这里插入图片描述

10. 模型的保存

# 自定义模型保存
# 状态字典保存
torch.save(model.state_dict(),'./模型参数/J1_resnet50_model_state_dict.pth') # 仅保存状态字典# 加载状态字典到模型
best_model = ResNet50().to(device) # 定义官方vgg16模型用来加载参数best_model.load_state_dict(torch.load('./模型参数/J1_resnet50_model_state_dict.pth')) # 加载状态字典到模型
<All keys matched successfully>

11. 使用训练好的模型进行预测

# 指定路径图片预测
from PIL import Image
import torchvision.transforms as transformsclasses = list(total_data.class_to_idx) # classes = list(total_data.class_to_idx)def predict_one_image(image_path,model,transform,classes):test_img = Image.open(image_path).convert('RGB')# plt.imshow(test_img) # 展示待预测的图片test_img = transform(test_img)img = test_img.to(device).unsqueeze(0)model.eval()output = model(img)print(output) # 观察模型预测结果的输出数据_,pred = torch.max(output,1)pred_class = classes[pred]print(f'预测结果是:{pred_class}')
# 预测训练集中的某张照片
predict_one_image(image_path='./data/bird_photos/Bananaquit/007.jpg',model = model,transform = test_transforms,classes = classes)
tensor([[13.8683,  4.9143,  4.8488,  0.3971, -4.3269, -6.6820, -5.4773, -4.8104,-6.3061, -6.0159, -4.1786, -5.2478, -4.7984, -4.5901, -5.0879, -4.8318,-5.1802, -4.8213, -4.1029, -4.8857, -5.7887, -4.4304, -5.2544, -4.4558,-3.9174, -4.3528, -5.6769, -5.0493, -4.5999, -6.1482, -4.0200, -3.2741,-4.6080, -6.3622, -3.1413, -4.3438, -5.2021, -4.2925, -5.5243, -4.7640,-4.9537, -5.5491, -5.6634, -3.9548, -4.3976, -5.2634, -5.1851, -4.0045,-6.0956, -4.2346, -4.1718, -4.4907, -4.1201, -4.3656, -4.0707, -5.3282,-5.3788, -4.4176, -4.8130, -5.5919, -5.5178, -5.1131, -4.6648, -4.9041,-5.3978, -5.4855, -5.0189, -4.8627, -5.7097, -4.2608, -5.3921, -4.4241,-5.8152, -5.2379, -5.2549, -5.9455, -4.4937, -5.2863, -5.2548, -5.5048,-4.9770, -5.0247, -4.8115, -5.1978, -5.0874, -4.8657, -4.7004, -6.1652,-7.1067, -5.3773, -5.5511, -4.6870, -5.7534, -4.9669, -4.2131, -5.3542,-4.9979, -5.4464, -5.2461, -4.8821, -5.5314, -5.8627, -4.4703, -4.0505,-4.3990, -6.0654, -4.9767, -4.8933, -5.0749, -5.0969, -4.7121, -4.7877,-5.9138, -5.0609, -5.6325, -4.4758, -5.3832, -5.3308, -5.1663, -5.3744,-4.6568, -5.5547, -4.7015, -4.5332, -4.7048, -4.0575, -4.9354, -5.9719,-4.3700, -4.3375, -4.3835, -5.3360, -4.6949, -4.7043, -3.0128, -5.4335,-4.1490, -5.5024, -5.1213, -4.5514, -4.3888, -5.1336, -4.9035, -2.9031,-4.2921, -5.1654, -4.5989, -5.7990, -5.1267, -4.8723, -5.2425, -5.2648,-4.7031, -4.4419, -4.9500, -5.4625, -4.4614, -6.0281, -4.5982, -5.2243,-5.2080, -4.5609, -4.2382, -5.6643, -5.3306, -4.9993, -5.4132, -5.1988,-4.8110, -4.3645, -4.7883, -4.4945, -4.1371, -6.1615, -4.3348, -6.0694,-5.0832, -5.7544, -7.4370, -5.0871, -4.8265, -4.9912, -5.4170, -4.7337,-4.8869, -4.2867, -6.0734, -5.3458, -4.6136, -4.6427, -5.0670, -5.2674,-5.3138, -6.1891, -4.5351, -5.4272, -4.0822, -3.8868, -5.3524, -4.5716,-5.2943, -5.4524, -5.8091, -4.6113, -6.2336, -3.9732, -5.5085, -4.9551,-5.8190, -4.7829, -6.0425, -4.4670, -5.0961, -4.8832, -4.9884, -5.3502,-4.7928, -4.6363, -5.2002, -5.2305, -6.3564, -4.8475, -5.7222, -4.9972,-4.8803, -4.9031, -4.7486, -5.1633, -4.4830, -5.8250, -4.9781, -6.4707,-5.1635, -6.2186, -4.6911, -6.1466, -4.3560, -4.0647, -5.6964, -4.6971,-4.5650, -5.2661, -4.4342, -6.5263, -5.0083, -4.1184, -4.4144, -4.3142,-3.9152, -4.6833, -3.9448, -4.7297, -4.7736, -4.5994, -5.2097, -3.7666,-4.4968, -4.7199, -3.7594, -4.8945, -4.8153, -4.3126, -5.4928, -4.2669,-4.4810, -5.1798, -6.5569, -6.4180, -6.2858, -5.0941, -4.5702, -5.1153,-5.6136, -5.2451, -4.9205, -5.2890, -4.1699, -4.1866, -4.2302, -4.9986,-4.8075, -5.6134, -3.6785, -5.4610, -5.5478, -6.9582, -4.6375, -5.1448,-4.6614, -5.0536, -4.4895, -5.3882, -4.4433, -5.9130, -5.5548, -5.1081,-5.9129, -5.2355, -5.0405, -4.8093, -4.5147, -6.5717, -4.7978, -6.3876,-4.6591, -6.3384, -5.6406, -5.2991, -3.7750, -4.6432, -5.0256, -5.9266,-4.7254, -5.3511, -4.1279, -5.8108, -5.6086, -4.8933, -4.4658, -4.2604,-4.2203, -6.0904, -4.4941, -4.3299, -4.4338, -4.5120, -5.5362, -5.6916,-4.3631, -5.7946, -4.5226, -5.0334, -5.3108, -4.6992, -5.8546, -5.3448,-4.7411, -4.6165, -5.0561, -3.7938, -4.5349, -6.3409, -5.6717, -5.2238,-5.4950, -5.6322, -5.9336, -4.7374, -5.2193, -4.7341, -5.5894, -4.9538,-4.9265, -4.3776, -5.9501, -4.6434, -4.7603, -3.4144, -4.9672, -4.5454,-4.5984, -4.3427, -5.4971, -4.6948, -4.5390, -4.1352, -5.3147, -5.4603,-5.7149, -4.4007, -5.0655, -5.0953, -3.7071, -5.5659, -4.5470, -4.9357,-4.5709, -4.9261, -4.6197, -4.9192, -5.8589, -5.4089, -4.1649, -5.2944,-5.5576, -5.7486, -4.8553, -4.2282, -4.0010, -6.0522, -5.6085, -5.3450,-5.6549, -4.8746, -4.5044, -5.1996, -5.0918, -4.1159, -4.2053, -4.7821,-5.6509, -6.5732, -4.7520, -5.1714, -5.1409, -5.1455, -6.2418, -5.0210,-5.5984, -3.9693, -5.4372, -5.1220, -5.2193, -4.5396, -4.4132, -5.4393,-4.9878, -5.6195, -4.7220, -5.4855, -4.8570, -4.3293, -5.4886, -5.1216,-6.0905, -5.6525, -4.9218, -5.5533, -4.9065, -5.2826, -4.3511, -4.3716,-4.7577, -5.2228, -4.3568, -5.2613, -7.0981, -4.7413, -4.1612, -5.1176,-5.5265, -4.8816, -5.5066, -3.1811, -5.5949, -5.1209, -5.3330, -4.5807,-5.0738, -6.2544, -5.7920, -4.8863, -5.4842, -4.1021, -4.2780, -5.6989,-4.9062, -4.9241, -4.6026, -3.8766, -4.2304, -5.3913, -3.9213, -4.8042,-3.8525, -4.7163, -5.0682, -5.0261, -5.7655, -6.6659, -5.0076, -4.4935,-4.9612, -5.2125, -5.8215, -5.3559, -4.8470, -4.5751, -5.2267, -5.7606,-5.1162, -5.7072, -4.0790, -5.3081, -4.5741, -5.2311, -5.0682, -3.9425,-4.0050, -5.5297, -4.4969, -4.0187, -5.7901, -4.9107, -5.2692, -4.6438,-5.0574, -5.8231, -5.3713, -5.0068, -4.3541, -4.4603, -4.4939, -4.8495,-5.5300, -4.9960, -3.5204, -4.3364, -6.1883, -4.1293, -5.0230, -4.7546,-5.8216, -4.1616, -5.9442, -5.3490, -3.8164, -5.5285, -4.4659, -3.8073,-4.0800, -4.3338, -4.8140, -5.4170, -5.5654, -3.5721, -5.4222, -5.4133,-5.3061, -5.6210, -5.0620, -4.9480, -5.4236, -5.0383, -4.5365, -6.5556,-4.9221, -5.6572, -5.3458, -4.0751, -3.5474, -5.1584, -5.4831, -5.0386,-5.1952, -5.7538, -5.2630, -4.6680, -5.3158, -4.4897, -5.2653, -5.6185,-5.2754, -4.9732, -3.6142, -3.3807, -5.9308, -3.3762, -4.5909, -4.8592,-5.4307, -5.8186, -3.1528, -5.8814, -4.3251, -5.4645, -5.7290, -5.5545,-6.9818, -4.6826, -5.2847, -5.2316, -5.3749, -5.5513, -5.0912, -6.0087,-5.0094, -5.2834, -5.9248, -4.2985, -5.6460, -4.0210, -5.0835, -5.0239,-4.2798, -4.0711, -3.0299, -4.4249, -3.8580, -5.4938, -6.1500, -6.2026,-5.5107, -4.6297, -5.2490, -4.1693, -5.5621, -5.3462, -4.4608, -5.4131,-4.8175, -4.7294, -5.3795, -4.7759, -4.9308, -4.6114, -4.8512, -5.6910,-4.5780, -6.0506, -4.5082, -5.0415, -5.1643, -4.3208, -5.7007, -5.4402,-5.0097, -3.7647, -5.9034, -4.9685, -4.2927, -3.3002, -6.0967, -4.7784,-5.0862, -4.9967, -5.5023, -4.9356, -5.8725, -4.7621, -4.8660, -5.6542,-4.1783, -5.8236, -4.4004, -5.2087, -6.2577, -5.9747, -3.9065, -4.9602,-4.9865, -6.0940, -5.1763, -4.1279, -4.7915, -4.5835, -4.4909, -5.0032,-4.4306, -5.1279, -5.9237, -5.6016, -4.1580, -5.8993, -5.5826, -5.1257,-5.2317, -5.4553, -5.0349, -5.3762, -4.8476, -5.7886, -4.9892, -5.3761,-6.2784, -4.3499, -5.6478, -5.4893, -3.0633, -4.5597, -5.5055, -5.4887,-5.8181, -5.6683, -6.3172, -4.5253, -5.2920, -4.5857, -5.5727, -4.5398,-4.7678, -5.5095, -3.8584, -5.2461, -5.6084, -4.6665, -5.4107, -4.8152,-5.4975, -5.0608, -4.3795, -6.9169, -5.0226, -5.4908, -5.5358, -5.0029,-5.5313, -4.9354, -4.8460, -4.9901, -4.7630, -4.8377, -5.0652, -5.9628,-5.9703, -5.4385, -4.6380, -5.6674, -5.3192, -4.4605, -3.6204, -5.3540,-7.2942, -4.0140, -5.5212, -4.0053, -3.5999, -5.2319, -5.9446, -5.6247,-4.3006, -5.1588, -4.5104, -3.9837, -5.1592, -4.2998, -6.2257, -5.3139,-4.5336, -5.6970, -4.5432, -5.0471, -5.1169, -5.7729, -5.3915, -3.4912,-4.6369, -5.2365, -6.0601, -5.3651, -5.0499, -5.1211, -4.7336, -6.7476,-5.6456, -5.0389, -4.7289, -5.5121, -2.9521, -4.6852, -5.8838, -5.6147,-4.9222, -4.7334, -5.0473, -5.3684, -4.3785, -4.4092, -5.7249, -5.1093,-4.9247, -4.0973, -5.2757, -5.0103, -5.3298, -5.2246, -5.2376, -5.0409,-5.3682, -4.4103, -5.2739, -5.7753, -5.3121, -5.3229, -4.7973, -5.3419,-4.0869, -5.5489, -6.0253, -4.6384, -4.7001, -5.3798, -5.4072, -4.6274,-5.2741, -6.1363, -4.6067, -5.3099, -5.0059, -5.1699, -4.9767, -5.2467,-5.0942, -4.4623, -5.6662, -4.6116, -5.3887, -4.7994, -4.1454, -2.2531,-5.6628, -5.2896, -4.7683, -6.1704, -5.5401, -7.0299, -5.1669, -5.5821,-4.7684, -5.2925, -4.6315, -4.8803, -5.1687, -5.2941, -4.9299, -4.8190,-5.4344, -4.7551, -4.7198, -5.1019, -5.7492, -6.1550, -5.6996, -4.4132,-6.2275, -5.4198, -4.8401, -5.1504, -5.1971, -5.7264, -4.6849, -5.0585,-3.8531, -3.6110, -4.3900, -4.0146, -5.6333, -5.7491, -4.2836, -4.9333,-5.2104, -4.4378, -4.6586, -6.6317, -5.3482, -4.9060, -4.0507, -4.3850,-4.3232, -4.4060, -4.6808, -6.1481, -5.0341, -5.0642, -4.2104, -4.4937,-5.8942, -5.7710, -5.0782, -4.6604, -6.3730, -7.0023, -5.4708, -6.7699,-4.6094, -5.3579, -6.3511, -5.2445, -3.5320, -4.9982, -5.1565, -5.1640,-5.4871, -3.6589, -3.9923, -5.0592, -4.5019, -5.9001, -4.1611, -4.6703,-5.1029, -2.9716, -5.3578, -5.1678, -4.0690, -6.2209, -4.3308, -4.6219,-5.7228, -3.6582, -4.6460, -5.5739, -4.9900, -5.2182, -5.1610, -4.2914,-3.4296, -4.7841, -5.4836, -4.0942, -5.3494, -4.3294, -6.1656, -5.4277,-5.9730, -3.6229, -5.0981, -5.5474, -5.6498, -4.2508, -3.6384, -4.9230,-5.5150, -3.9948, -5.5786, -4.2315, -4.3435, -5.1986, -4.8257, -4.2392,-4.6649, -5.5955, -5.2190, -4.8896, -5.6084, -5.1639, -5.6644, -4.2302,-4.6478, -5.2653, -5.4640, -4.5797, -6.1926, -4.3489, -5.2554, -4.2098,-5.5954, -4.5482, -4.8853, -5.3986, -4.9047, -4.2353, -4.8603, -5.6714,-5.5819, -5.5323, -4.5244, -3.7890, -5.6494, -5.6447, -4.6866, -4.5489,-5.4129, -5.2079, -5.7100, -5.2953, -4.0829, -5.3427, -4.6995, -5.5088,-5.3798, -5.3735, -4.4773, -5.0795, -5.4732, -5.3964, -5.0798, -4.6644,-5.7256, -6.7874, -4.4255, -4.7243, -4.0838, -4.5000, -5.7769, -5.8769,-5.8356, -5.6986, -4.8260, -4.9483, -3.8793, -4.4843, -4.7780, -2.8808,-5.0341, -5.5861, -4.7410, -4.6428, -6.2251, -4.2188, -3.2221, -5.4640,-5.5350, -3.3220, -5.3559, -5.2414, -5.0133, -3.9686, -5.3160, -4.1124]],device='cuda:0', grad_fn=<AddmmBackward0>)
预测结果是:Bananaquit
classes
['Bananaquit', 'Black Skimmer', 'Black Throated Bushtiti', 'Cockatoo']

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/439078.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

STM32+PWM+DMA驱动WS2812 —— 2024年9月24日

一、项目简介 采用STM32f103C8t6单片机&#xff0c;使用HAL库编写。项目中针对初学者驱动WS2812时会遇到的一些问题&#xff0c;给出了解决方案。 二、ws2812驱动原理 WS2812采用单线归零码的通讯方式&#xff0c;即利用高低电平的持续时间来确定0和1。这种通信方式优点是只需…

Vue 学习

vue 核心语法 <!DOCTYPE html> <html> <head><meta charset"UTF-8"><meta name"viewport" content"widthdevice-width, initial-scale1.0"><title>Vue 核心语法测试</title> </head><body&…

外包功能测试干了4年,技术退步太明显了。。。。。​

先说一下自己的情况&#xff0c;本科生&#xff0c;18年通过校招进入武汉某软件公司&#xff0c;干了差不多4年的功能测试&#xff0c;今年中秋&#xff0c;感觉自己不能够在这样下去了&#xff0c;长时间呆在一个舒适的环境会让一个人堕落!而我已经在一个企业干了四年的功能测…

信号用wire类型还是reg类型定义

wire类型就是一根线&#xff0c;线有两端&#xff0c;一端发生改变&#xff0c;经过线传递的信号当然也会发生改变&#xff0c;reg类型则不同&#xff0c;可以把reg类型理解为存储数据的寄存器&#xff0c;当满足一定条件时&#xff0c;数值才被激活发生改变。 那么&#xff0…

【AI论文精读1】针对知识密集型NLP任务的检索增强生成(RAG原始论文)

目录 一、简介一句话简介作者、引用数、时间论文地址开源代码地址 二、摘要三、引言四、整体架构&#xff08;用一个例子来阐明&#xff09;场景例子&#xff1a;核心点&#xff1a; 五、方法 &#xff08;架构各部分详解&#xff09;5.1 模型1. RAG-Sequence Model2. RAG-Toke…

【Conda】修复 Anaconda 安装并保留虚拟环境的详细指南

目录 流程图示1. 下载 Anaconda 安装程序2. 重命名现有的 Anaconda 安装目录Windows 操作系统Linux 操作系统 3. 运行新的 Anaconda 安装程序Windows 操作系统Linux 操作系统 4. 同步原环境使用 robocopy 命令&#xff08;Windows&#xff09;使用 rsync 命令&#xff08;Linux…

C++11新特性(基础)【2】

目录 1.范围for循环 2.智能指针 3.STL中一些变化 4.右值引用和移动语义 4.1 左值引用和右值引用 4.2 左值引用与右值引用比较 4.3 右值引用使用场景和意义 4.4 右值引用引用左值及其一些更深入的使用场景分析 4.5 完美转发 1.范围for循环 int main() {int array[10] { 1,2,3,4…

超声波清洗机哪个品牌的最好?爆款超声波清洗机测评大揭秘

面对超声波清洗机的选购疑虑&#xff0c;许多朋友或是担心其效用不实&#xff0c;落入消费陷阱&#xff0c;或是已经遭遇了不尽如人意的产品体验。对此&#xff0c;我分享的经验或许能为你指点迷津&#xff01;基于亲测超过二十几款市面上热门的超声波眼镜清洗机&#xff0c;我…

Rust 做桌面应用这么轻松?Pake 彻底改变你的开发方式

Rust 做桌面应用这么轻松&#xff1f;Pake 彻底改变你的开发方式 网页应用装不下了&#xff1f;别担心&#xff0c;Pake 用 Rust 帮你打包网页&#xff0c;快速搞定桌面应用。比起动不动就 100M 的 Electron 应用&#xff0c;它轻如鸿毛&#xff0c;功能却一点都不少&#xff0…

JavaScript 数组方法

数组(array)是按次序排列的一组值。每个值的位置都有编号(从0开始)&#xff0c;整个数组用方括号表示。两端的方括号是数组的标志。 var a["a","b","c"]; 除了在定义时赋值&#xff0c;数组也可以先定义后赋值。 var arr[];arr[1]"a"…

数据流和数据流处理技术

一数据流 首先明确数据流概念&#xff1a;数据流是连续不断生成的、快速变化的无界数据序列 数据流类型&#xff1a; 数据流大致可以分为四种类型 1.连续型数据流&#xff1a;不断地产生数据&#xff0c;数据稳定速度输入系统。 2.突发型数据流&#xff1a;在某特定时间或…

【通配符】粗浅学习

1 背景说明 首先要注意&#xff0c;通配符中的符号和正则表达式中的特殊符号具备不同的匹配意义&#xff0c;例如&#xff1a;*在正则表达式中表示里面是指匹配前面的子表达式0次或者多次&#xff0c;而在通配符领域则是表示代表0个到无穷个任意字符。 此外&#xff0c;要注意…

IDEA 配置 Git 详解

本文将介绍在IntelliJ IDEA 中如何配置Git 没有安装配置 Git 的可以参考我的这篇文章&#xff1a;安装配置 Git 一、操作环境及准备 1.win 10 2.已安装且配置了Git 3.有Gitee账户 4.安装了IntelliJ IDEA 2023.2.1 5.全程联网 二、配置步骤 2.1 配置git 1.采用全局设置&…

基于SpringBoot+Vue+MySQL的装修公司管理系统

系统展示 管理员后台界面 员工后台界面 系统背景 随着信息技术的快速发展&#xff0c;装修行业正面临数字化转型的关键时刻。传统的装修管理方式存在信息管理混乱、出错率高、信息安全性差等问题&#xff0c;已无法满足现代市场的需求。因此&#xff0c;开发一套高效、便捷的装…

Gaussian-splatting 项目环境配置笔记(Win11)

如果你是配置别的项目的过程中用到了3D GS相关的内容&#xff0c;然后这部分内容环境一直配不好&#xff0c;也可以跟随这个博客配一下环境&#xff0c;配完后起码3D GS部分就搞定了。 文章目录 概述项目链接&#xff1a;VS2019直接下载链接CUDA不同版本下载链接安装Condasetup…

谷歌收录批量查询,谷歌收录批量查询的简单方法

谷歌收录批量查询是网站管理员和SEO优化人员常见的需求&#xff0c;以下提供几种简单且高效的批量查询方法&#xff1a; 一、使用Google Search Console&#xff08;谷歌搜索控制台&#xff09; 注册并验证网站&#xff1a; 首先&#xff0c;确保你已经在Google Search Conso…

【JVM】垃圾释放方式:标记-清除、复制算法、标记-整理、分代回收

文章目录 1. 标记-清除2. 复制算法4. 标记-整理4. 分代回收 把标记为垃圾的对象的内存空间进行释放。主要有三种释放方式 1. 标记-清除 把标记为垃圾的对象&#xff0c;直接释放掉&#xff08;最朴素的做法&#xff09; 此时就是把标记为垃圾的对象所对应的内存空间直接释放。…

Visual Studio C# 处理和修复 WinRiver II 测量项目 MMT 文件错误

Visual Studio C# 处理和修复 WinRiver II 测量项目 MMT 文件错误 前言一、WinRiver II 测量项目 MMT 文件的结构二、WinRiver II 无法打开或操作测量项目 MMT 文件2.1 无法载入船测多线法测量文件2.2 可以载入测验项目 MMT 文件&#xff0c;但 ADCP 后处理软件无法写入信息2.3…

【数学分析笔记】第4章第4节 复合函数求导法则及其应用(2)

4. 微分 4.4 复合函数求导法则及其应用 【例4.4.3】 y e 1 cos ⁡ x ye^{\sqrt{1\cos x}} ye1cosx ​&#xff0c;求 y ′ y y′ 【解】 y ′ e 1 cos ⁡ x ⋅ 1 2 1 cos ⁡ x ⋅ ( − sin ⁡ x ) − sin ⁡ x 2 1 cos ⁡ x e 1 cos ⁡ x ye^{\sqrt{1\cos x}}\cdot\f…

JavaScript 中最快的循环是什么?

无论使用哪种编程语言&#xff0c;循环都是一种内置功能。JavaScript 也不例外&#xff0c;它提供了多种实现循环的方法&#xff0c;偶尔会给开发人员带来困惑&#xff1a;哪一种循环才是最快的&#xff1f; 以下是Javascript中可以实现循环的方法&#xff1a; For Loop While …