C++11新特性(基础)【2】

目录

1.范围for循环

2.智能指针

3.STL中一些变化

4.右值引用和移动语义

4.1 左值引用和右值引用

4.2 左值引用与右值引用比较

4.3 右值引用使用场景和意义

4.4 右值引用引用左值及其一些更深入的使用场景分析

4.5 完美转发


1.范围for循环

int main()
{int array[10] = { 1,2,3,4,5,6,7,8,9,10 };for (auto i : array){cout << i << " ";}return 0;
}

范围for底层其实套用的是迭代器的访问,范围for的语法也很简单auto类型上一篇我已经说过了是编译器自动推导的类型,你当然也可以换成要访问的元素的类型,比如在这里就是int类型。范围for的使用场景我们一般都是在线性容器里使用的多。

2.智能指针

智能指针我会单出一篇来讲它,因为它比较重要,所以我们先不讲它。(我们先讲基础简单的)。

3.STL中一些变化

新容器

用橘色圈起来是C++11中的一些几个新容器,但是实际最有用的是unordered_map和 unordered_set。这两个我们前面已经进行了非常详细的讲解,其他的大家了解一下即可。

容器中的一些新方法

如果我们再细细去看会发现基本每个容器中都增加了一些C++11的方法,但是其实很多都是用得比较少的。

比如提供了cbegin和cend方法返回const迭代器等等,但是实际意义不大,因为begin和end也是可以返回const迭代器的,这些都是属于锦上添花的操作。

实际上C++11更新后,容器中增加的新方法最后用的插入接口函数的右值引用版本:

http://www.cplusplus.com/reference/vector/vector/emplace_back/

http://www.cplusplus.com/reference/vector/vector/push_back/

http://www.cplusplus.com/reference/map/map/insert/

http://www.cplusplus.com/reference/map/map/emplace/

但是这些接口到底意义在哪?网上都说他们能提高效率,他们是如何提高效率的?

请看下面的右值引用和移动语义章节的讲解。另外emplace还涉及模板的可变参数,也需要再继续深入学习后面的知识。

4.右值引用和移动语义

4.1 左值引用和右值引用

传统的C++语法中就有引用的语法,而C++11中新增了的右值引用语法特性,所以从现在开始我们之前学习的引用就叫做左值引用。无论左值引用还是右值引用,都是给对象取别名

什么是左值?什么是左值引用?

左值是一个表示数据的表达式(如变量名或解引用的指针),我们可以获取它的地址+可以对它赋值左值可以出现赋值符号的左边,右值不能出现在赋值符号左边。定义时const修饰符后的左值,不能给他赋值,但是可以取它的地址。左值引用就是给左值的引用,给左值取别名。

int main()
{// 以下的p、b、c、*p都是左值int* p = new int(0);int b = 1;const int c = 2;// 以下几个是对上面左值的左值引用int*& rp = p;int& rb = b;const int& rc = c;int& pvalue = *p;return 0;
}

什么是右值?什么是右值引用?

右值也是一个表示数据的表达式,如:字面常量、表达式返回值,函数返回值(这个不能是左值引用返回)等等,右值可以出现在赋值符号的右边,但是不能出现出现在赋值符号的左边,右值不能取地址。右值引用就是对右值的引用,给右值取别名。

int main()
{double x = 1.1, y = 2.2;// 以下几个都是常见的右值10;x + y;fmin(x, y);// 以下几个都是对右值的右值引用int&& rr1 = 10;double&& rr2 = x + y;double&& rr3 = fmin(x, y);// 这里编译会报错:error C2106: “=”: 左操作数必须为左值10 = 1;x + y = 1;fmin(x, y) = 1;return 0;
}

需要注意的是右值是不能取地址的,但是给右值取别名后,会导致右值被存储到特定位置,且可以取到该位置的地址,也就是说例如:不能取字面量10的地址,但是rr1引用后,可以对rr1取地址,也可以修改rr1。如果不想rr1被修改,可以用const int&& rr1 去引用,是不是感觉很神奇, 这个了解一下实际中右值引用的使用场景并不在于此,这个特性也不重要。

int main()
{double x = 1.1, y = 2.2;int&& rr1 = 10;const double&& rr2 = x + y;rr1 = 20;rr2 = 5.5;  // 报错return 0;
}

4.2 左值引用与右值引用比较

左值引用总结:

1. 左值引用只能引用左值,不能引用右值。

2. 但是const左值引用既可引用左值,也可引用右值。

int main()
{// 左值引用只能引用左值,不能引用右值。int a = 10;int& ra1 = a;      // ra为a的别名//int& ra2 = 10;   // 编译失败,因为10是右值// const左值引用既可引用左值,也可引用右值。const int& ra3 = 10;const int& ra4 = a;return 0;
}

右值引用总结:

1. 右值引用只能右值,不能引用左值。

2. 但是右值引用可以move以后的左值。

int main()
{// 右值引用只能右值,不能引用左值。int&& r1 = 10;// error C2440: “初始化”: 无法从“int”转换为“int &&”// message : 无法将左值绑定到右值引用int a = 10;int&& r2 = a;//编译报错// 右值引用可以引用move以后的左值int&& r3 = std::move(a);return 0;
}

4.3 右值引用使用场景和意义

前面我们可以看到左值引用既可以引用左值和又可以引用右值,那为什么C++11还要提出右值引用呢?是不是化蛇添足呢?下面我们来看看左值引用的短板,右值引用是如何补齐这个短板的!

namespace kuruomi
{class string{public:typedef char* iterator;iterator begin(){return _str;}iterator end(){return _str + _size;}string(const char* str = ""):_size(strlen(str)), _capacity(_size){//cout << "string(char* str)" << endl;_str = new char[_capacity + 1];strcpy(_str, str);}// s1.swap(s2)void swap(string& s){::swap(_str, s._str);::swap(_size, s._size);::swap(_capacity, s._capacity);}// 拷贝构造string(const string& s):_str(nullptr){cout << "string(const string& s) -- 深拷贝" << endl;string tmp(s._str);swap(tmp);}// 赋值重载string& operator=(const string& s){cout << "string& operator=(string s) -- 深拷贝" << endl;string tmp(s);swap(tmp);return *this;}// 移动构造string(string&& s):_str(nullptr), _size(0), _capacity(0){cout << "string(string&& s) -- 移动语义" << endl;swap(s);}// 移动赋值string& operator=(string&& s){cout << "string& operator=(string&& s) -- 移动语义" << endl;swap(s);return *this;}~string(){delete[] _str;_str = nullptr;}char& operator[](size_t pos){assert(pos < _size);return _str[pos];}void reserve(size_t n){if (n > _capacity){char* tmp = new char[n + 1];strcpy(tmp, _str);delete[] _str;_str = tmp;_capacity = n;}}void push_back(char ch){if (_size >= _capacity){size_t newcapacity = _capacity == 0 ? 4 : _capacity * 2;reserve(newcapacity);}_str[_size] = ch;++_size;_str[_size] = '\0';}//string operator+=(char ch)string& operator+=(char ch){push_back(ch);return *this;}const char* c_str() const{return _str;}private:char* _str;size_t _size;size_t _capacity; // 不包含最后做标识的\0};
}

这是我们自己实现的string容器,总体内容跟我之前讲的是一样的,不一样的点就在于多了移动构造和移动赋值。我们先来说说移动构造,观察完代码我们不难发现,移动构造相比于拷贝构造本身就会少一层构造,这是因为拷贝构造的形参是左值引用,而移动构造的形参是右值引用,左值我们不能随意更改,因为逻辑上它是出了这个函数作用域照样存在的变量,随意修改可能会对程序造成无法预测的影响,所以我们会中间加上一次构造充当临时变量来实现深拷贝,而我们的移动构造就不需要考虑这个问题,编译器一旦识别它是个右值,那么它就会调用移动构造,我们知道右值对程序的影响不会那么大,绝大多数情况就是出了这个函数作用域就销毁了,所以我们可以直接进行数据的交换。

我们再来看看移动赋值,移动赋值跟传统赋值的区别就在于一个需要调用拷贝构造再进行交换,而另一个只需要直接交换就可以了,原因我之前也说过了,因为对形参的定义不同导致其实现不同,实现得按各个语法的概念去进行设计。

左值引用的使用场景:

做参数和做返回值都可以提高效率。

void func1(kuruomi::string s)
{}
void func2(const kuruomi::string& s)
{}
int main()
{kuruomi::string s1("hello world");// func1和func2的调用我们可以看到左值引用做参数减少了拷贝,提高效率的使用场景和价值func1(s1);cout << "func1()" << endl;func2(s1);cout << "func2()" << endl;// string operator+=(char ch) 传值返回存在深拷贝// string& operator+=(char ch) 传左值引用没有拷贝提高了效率s1 += '!';return 0;
}

左值引用的短板:

但是当函数返回对象是一个局部变量,出了函数作用域就不存在了,就不能使用左值引用返回, 只能传值返回。例如:bit::string to_string(int value)函数中可以看到,这里只能使用传值返回, 传值返回会导致至少1次拷贝构造(如果是一些旧一点的编译器可能是两次拷贝构造)。

namespace bit
{bit::string to_string(int value){bool flag = true;if (value < 0){flag = false;value = 0 - value;}bit::string str;while (value > 0){int x = value % 10;value /= 10;str += ('0' + x);}if (flag == false){str += '-';}std::reverse(str.begin(), str.end());return str;}
}
int main()
{// 在bit::string to_string(int value)函数中可以看到,这里// 只能使用传值返回,传值返回会导致至少1次拷贝构造(如果是一些旧一点的编译器可能是两次拷//贝构造)。bit::string ret1 = bit::to_string(1234);bit::string ret2 = bit::to_string(-1234);return 0;
}

右值引用和移动语义解决上述问题:

在bit::string中增加移动构造,移动构造本质是将参数右值的资源窃取过来,占位已有,那么就不用做深拷贝了,所以它叫做移动构造,就是窃取别人的资源来构造自己

// 移动构造
string(string&& s):_str(nullptr), _size(0), _capacity(0)
{cout << "string(string&& s) -- 移动语义" << endl;swap(s);
}
int main()
{bit::string ret2 = bit::to_string(-1234);return 0;
}

再运行上面bit::to_string的两个调用,我们会发现,这里没有调用深拷贝的拷贝构造,而是调用了移动构造,移动构造中没有新开空间,拷贝数据,所以效率提高了。

不仅仅有移动构造,还有移动赋值:

在bit::string类中增加移动赋值函数,再去调用bit::to_string(1234),不过这次是将 bit::to_string(1234)返回的右值对象赋值给ret1对象,这时调用的是移动构造。

// 移动赋值
string& operator=(string&& s)
{cout << "string& operator=(string&& s) -- 移动语义" << endl;swap(s);return *this;
}
int main()
{bit::string ret1;ret1 = bit::to_string(1234);return 0;
}
// 运行结果:
// string(string&& s) -- 移动语义
// string& operator=(string&& s) -- 移动语义

这里运行后,我们看到调用了一次移动构造和一次移动赋值。因为如果是用一个已经存在的对象接收,编译器就没办法优化了。bit::to_string函数中会先用str生成构造生成一个临时对象,但是我们可以看到,编译器很聪明的在这里把str识别成了右值,调用了移动构造。然后在把这个临时对象做为bit::to_string函数调用的返回值赋值给ret1,这里调用的移动赋值。

STL中的容器都是增加了移动构造和移动赋值:

http://www.cplusplus.com/reference/string/string/string/

http://www.cplusplus.com/reference/vector/vector/vector/

4.4 右值引用引用左值及其一些更深入的使用场景分析

按照语法,右值引用只能引用右值,但右值引用一定不能引用左值吗?因为:有些场景下,可能真的需要用右值去引用左值实现移动语义。当需要用右值引用引用一个左值时,可以通过move函数将左值转化为右值。C++11中,std::move()函数位于头文件中,该函数名字具有迷惑性, 它并不搬移任何东西,唯一的功能就是将一个左值强制转化为右值引用,然后实现移动语义。

int main()
{bit::string s1("hello world");// 这里s1是左值,调用的是拷贝构造bit::string s2(s1);// 这里我们把s1 move处理以后, 会被当成右值,调用移动构造// 但是这里要注意,一般是不要这样用的,因为我们会发现s1的// 资源被转移给了s3,s1被置空了。bit::string s3(std::move(s1));return 0;
}

STL容器插入接口函数也增加了右值引用版本:

http://www.cplusplus.com/reference/list/list/push_back/

http://www.cplusplus.com/reference/vector/vector/push_back/

int main()
{list<bit::string> lt;bit::string s1("1111");// 这里调用的是拷贝构造lt.push_back(s1);// 下面调用都是移动构造lt.push_back("2222");lt.push_back(std::move(s1));return 0;
}
//运行结果:
// string(const string& s) -- 深拷贝
// string(string&& s) -- 移动语义
// string(string&& s) -- 移动语义

4.5 完美转发

模板中的&& 万能引用

void Fun(int& x) { cout << "左值引用" << endl; }
void Fun(const int& x) { cout << "const 左值引用" << endl; }
void Fun(int&& x) { cout << "右值引用" << endl; }
void Fun(const int&& x) { cout << "const 右值引用" << endl; }
// 模板中的&&不代表右值引用,而是万能引用,其既能接收左值又能接收右值。
// 模板的万能引用只是提供了能够接收同时接收左值引用和右值引用的能力,
// 但是引用类型的唯一作用就是限制了接收的类型,后续使用中都退化成了左值,
// 我们希望能够在传递过程中保持它的左值或者右值的属性, 就需要用我们下面学习的完美转发template<typename T>
void PerfectForward(T&& t)
{Fun(t);
}
int main()
{PerfectForward(10);            // 右值int a;PerfectForward(a);             // 左值PerfectForward(std::move(a)); // 右值const int b = 8;PerfectForward(b);            // const 左值PerfectForward(std::move(b)); // const 右值return 0;
}

如:

大家可以看到确实都退化成了左值。

std::forward 完美转发在传参的过程中保留对象原生类型属性

void Fun(int& x) { cout << "左值引用" << endl; }
void Fun(const int& x) { cout << "const 左值引用" << endl; }
void Fun(int&& x) { cout << "右值引用" << endl; }
void Fun(const int&& x) { cout << "const 右值引用" << endl; }
// std::forward<T>(t)在传参的过程中保持了t的原生类型属性。
template<typename T>
void PerfectForward(T&& t)
{Fun(std::forward<T>(t));
}
int main()
{PerfectForward(10);            // 右值int a;PerfectForward(a);             // 左值PerfectForward(std::move(a)); // 右值const int b = 8;PerfectForward(b);      // const 左值PerfectForward(std::move(b)); // const 右值return 0;
}

完美转发实际中的使用场景:

template<class T>
struct ListNode
{ListNode* _next = nullptr;ListNode* _prev = nullptr;T _data;
};
template<class T>
class List
{typedef ListNode<T> Node;
public:List(){_head = new Node;_head->_next = _head;_head->_prev = _head;}void PushBack(T&& x){//Insert(_head, x);Insert(_head, std::forward<T>(x));}void PushFront(T&& x){//Insert(_head->_next, x);Insert(_head->_next, std::forward<T>(x));}void Insert(Node* pos, T&& x){Node* prev = pos->_prev;Node* newnode = new Node;newnode->_data = std::forward<T>(x); // 关键位置// prev newnode posprev->_next = newnode;newnode->_prev = prev;newnode->_next = pos;pos->_prev = newnode;}void Insert(Node* pos, const T& x){Node* prev = pos->_prev;Node* newnode = new Node;newnode->_data = x; // 关键位置// prev newnode posprev->_next = newnode;newnode->_prev = prev;newnode->_next = pos;pos->_prev = newnode;}
private:Node* _head;
};
int main()
{List<bit::string> lt;lt.PushBack("1111");lt.PushFront("2222");return 0;
}

运行截图:

大家可以看到万能引用配合完美转发就可以让我们的容器实现插入删除等操作时自动去调用对应的左值版本和右值版本,而且代码不用写两遍。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/439066.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

超声波清洗机哪个品牌的最好?爆款超声波清洗机测评大揭秘

面对超声波清洗机的选购疑虑&#xff0c;许多朋友或是担心其效用不实&#xff0c;落入消费陷阱&#xff0c;或是已经遭遇了不尽如人意的产品体验。对此&#xff0c;我分享的经验或许能为你指点迷津&#xff01;基于亲测超过二十几款市面上热门的超声波眼镜清洗机&#xff0c;我…

Rust 做桌面应用这么轻松?Pake 彻底改变你的开发方式

Rust 做桌面应用这么轻松&#xff1f;Pake 彻底改变你的开发方式 网页应用装不下了&#xff1f;别担心&#xff0c;Pake 用 Rust 帮你打包网页&#xff0c;快速搞定桌面应用。比起动不动就 100M 的 Electron 应用&#xff0c;它轻如鸿毛&#xff0c;功能却一点都不少&#xff0…

JavaScript 数组方法

数组(array)是按次序排列的一组值。每个值的位置都有编号(从0开始)&#xff0c;整个数组用方括号表示。两端的方括号是数组的标志。 var a["a","b","c"]; 除了在定义时赋值&#xff0c;数组也可以先定义后赋值。 var arr[];arr[1]"a"…

数据流和数据流处理技术

一数据流 首先明确数据流概念&#xff1a;数据流是连续不断生成的、快速变化的无界数据序列 数据流类型&#xff1a; 数据流大致可以分为四种类型 1.连续型数据流&#xff1a;不断地产生数据&#xff0c;数据稳定速度输入系统。 2.突发型数据流&#xff1a;在某特定时间或…

【通配符】粗浅学习

1 背景说明 首先要注意&#xff0c;通配符中的符号和正则表达式中的特殊符号具备不同的匹配意义&#xff0c;例如&#xff1a;*在正则表达式中表示里面是指匹配前面的子表达式0次或者多次&#xff0c;而在通配符领域则是表示代表0个到无穷个任意字符。 此外&#xff0c;要注意…

IDEA 配置 Git 详解

本文将介绍在IntelliJ IDEA 中如何配置Git 没有安装配置 Git 的可以参考我的这篇文章&#xff1a;安装配置 Git 一、操作环境及准备 1.win 10 2.已安装且配置了Git 3.有Gitee账户 4.安装了IntelliJ IDEA 2023.2.1 5.全程联网 二、配置步骤 2.1 配置git 1.采用全局设置&…

基于SpringBoot+Vue+MySQL的装修公司管理系统

系统展示 管理员后台界面 员工后台界面 系统背景 随着信息技术的快速发展&#xff0c;装修行业正面临数字化转型的关键时刻。传统的装修管理方式存在信息管理混乱、出错率高、信息安全性差等问题&#xff0c;已无法满足现代市场的需求。因此&#xff0c;开发一套高效、便捷的装…

Gaussian-splatting 项目环境配置笔记(Win11)

如果你是配置别的项目的过程中用到了3D GS相关的内容&#xff0c;然后这部分内容环境一直配不好&#xff0c;也可以跟随这个博客配一下环境&#xff0c;配完后起码3D GS部分就搞定了。 文章目录 概述项目链接&#xff1a;VS2019直接下载链接CUDA不同版本下载链接安装Condasetup…

谷歌收录批量查询,谷歌收录批量查询的简单方法

谷歌收录批量查询是网站管理员和SEO优化人员常见的需求&#xff0c;以下提供几种简单且高效的批量查询方法&#xff1a; 一、使用Google Search Console&#xff08;谷歌搜索控制台&#xff09; 注册并验证网站&#xff1a; 首先&#xff0c;确保你已经在Google Search Conso…

【JVM】垃圾释放方式:标记-清除、复制算法、标记-整理、分代回收

文章目录 1. 标记-清除2. 复制算法4. 标记-整理4. 分代回收 把标记为垃圾的对象的内存空间进行释放。主要有三种释放方式 1. 标记-清除 把标记为垃圾的对象&#xff0c;直接释放掉&#xff08;最朴素的做法&#xff09; 此时就是把标记为垃圾的对象所对应的内存空间直接释放。…

Visual Studio C# 处理和修复 WinRiver II 测量项目 MMT 文件错误

Visual Studio C# 处理和修复 WinRiver II 测量项目 MMT 文件错误 前言一、WinRiver II 测量项目 MMT 文件的结构二、WinRiver II 无法打开或操作测量项目 MMT 文件2.1 无法载入船测多线法测量文件2.2 可以载入测验项目 MMT 文件&#xff0c;但 ADCP 后处理软件无法写入信息2.3…

【数学分析笔记】第4章第4节 复合函数求导法则及其应用(2)

4. 微分 4.4 复合函数求导法则及其应用 【例4.4.3】 y e 1 cos ⁡ x ye^{\sqrt{1\cos x}} ye1cosx ​&#xff0c;求 y ′ y y′ 【解】 y ′ e 1 cos ⁡ x ⋅ 1 2 1 cos ⁡ x ⋅ ( − sin ⁡ x ) − sin ⁡ x 2 1 cos ⁡ x e 1 cos ⁡ x ye^{\sqrt{1\cos x}}\cdot\f…

JavaScript 中最快的循环是什么?

无论使用哪种编程语言&#xff0c;循环都是一种内置功能。JavaScript 也不例外&#xff0c;它提供了多种实现循环的方法&#xff0c;偶尔会给开发人员带来困惑&#xff1a;哪一种循环才是最快的&#xff1f; 以下是Javascript中可以实现循环的方法&#xff1a; For Loop While …

Pikachu- Over Permission-垂直越权

以admin 账号登陆&#xff0c;添加一个用户&#xff1b; 把添加用户的这个请求发送到 repeater&#xff1b; 退出admin&#xff0c;使用普通用户pikachu登陆&#xff1b; 只有查看权限&#xff1b; 使用pikachu 用户的认证信息&#xff0c;替换repeater处管理员创建用户请求的…

0基础学前端 day6 -- 搭建github pages静态网址

标题&#xff1a;如何通过 GitHub Pages 创建一个静态网站 GitHub Pages 是 GitHub 提供的一项免费服务&#xff0c;允许用户从 GitHub 仓库中托管静态网站。对于开发者和非开发者来说&#xff0c;这都是一个极其便利的工具&#xff0c;用于创建和发布个人博客、项目文档或作品…

Redis中GEO数据结构实现附近商户搜索

Redis的版本必须是6.2以上 在测试类中将数据导入Redis Testvoid loadShopData(){//1.查询店铺信息List<Shop> list shopService.list();//2.把店铺分组&#xff0c;按照typeId分组&#xff0c;typeId一致的放到一个集合Map<Long, List<Shop>> map list.s…

在vscode在使用idea编辑器的快捷键

在vscode在使用idea编辑器的快捷键 在vscode扩展在搜索idea key结果如下&#xff1a; 选择IntelliJ IDEA Keybindings安装&#xff08;注意作者是Keisuke Kato&#xff09;&#xff0c;安装后就可以在vscode编辑器中使用idea编辑器的快捷键。

五子棋双人对战项目(2)——登录模块

目录 一、数据库模块 1、创建数据库 2、使用MyBatis连接并操作数据库 编写后端数据库代码 二、约定前后端交互接口 三、后端代码编写 文件路径如下&#xff1a; UserAPI&#xff1a; UserMapper&#xff1a; 四、前端代码 登录页面 login.html&#xff1a; 注册页面…

ZenStack全栈开发工具(一)快速使用指南

简介 ZenStack是一个TypeScript工具&#xff0c;通过灵活的授权和自动生成的类型安全的 API/钩子来增强 Prisma ORM&#xff0c;从而简化全栈开发 数据库-》应用接口 数据库-》前端 参考官方网站&#xff1a;https://zenstack.dev/ 如果我们想做一个全栈开发的web应用程序&am…

记一次教学版内网渗透流程

信息收集 如果觉得文章写的不错可以共同交流 http://aertyxqdp1.target.yijinglab.com/dirsearch dirsearch -u "http://aertyxqdp1.target.yijinglab.com/"发现 http://aertyxqdp1.target.yijinglab.com/joomla/http://aertyxqdp1.target.yijinglab.com/phpMyA…