进阶岛第4关:InternVL 多模态模型部署微调实践

准备InternVL模型

我们使用InternVL2-2B模型。该模型已在share文件夹下挂载好,现在让我们把移动出来。

  • mkdir -p /root/project/joke/model
  • cp -r /root/share/new_models/OpenGVLab/InternVL2-2B /root/project/joke/model

# 不用ln -s

 

准备环境

这里我们来手动配置下xtuner。

conda create --name xtuner python=3.10 -y# 激活虚拟环境(注意:后续的所有操作都需要在这个虚拟环境中进行)
conda activate xtuner# 安装一些必要的库
conda install pytorch==2.1.2 torchvision==0.16.2 torchaudio==2.1.2 pytorch-cuda=12.1 -c pytorch -c nvidia -y
# 安装其他依赖
apt install libaio-dev
pip install transformers==4.39.3
pip install streamlit==1.36.0cd /root/project/joke/codegit clone -b v0.1.23  https://github.com/InternLM/XTunercd XTuner
pip install -e '.[deepspeed]'pip install lmdeploy==0.5.3 datasets matplotlib Pillow timmxtuner version

准备微调数据集

我们这里使用huggingface上的zhongshsh/CLoT-Oogiri-GO据集,特别鸣谢~。

数据集我们从官网下载下来并进行去重,只保留中文数据等操作。并制作成XTuner需要的形式。并已在share里,我们一起从share里挪出数据集。

## 首先让我们安装一下需要的包
pip install datasets matplotlib Pillow timm## 让我们把数据集挪出来
cp -r /root/share/new_models/datasets/CLoT_cn_2000 /root/InternLM/datasets/

让我们打开数据集的一张图看看,我们选择jsonl里的第一条数据对应的图片。首先我们先把这张图片挪动到InternLM文件夹下面。

cp InternLM/datasets/CLoT_cn_2000/ex_images/007aPnLRgy1hb39z0im50j30ci0el0wm.jpg InternLM/

InternVL 推理部署攻略

使用pipeline进行推理

之后我们使用lmdeploy自带的pipeline工具进行开箱即用的推理流程,首先我们新建一个文件。

  • touch /root/InternLM/code/test_lmdeploy.py
  • cd /root/InternLM/code/

然后把以下代码拷贝进test_lmdeploy.py中。

from lmdeploy import pipeline
from lmdeploy.vl import load_imagepipe = pipeline('/root/model/InternVL2-2B')image = load_image('/root/InternLM/007aPnLRgy1hb39z0im50j30ci0el0wm.jpg')
response = pipe(('请你根据这张图片,讲一个脑洞大开的梗', image))
print(response.text)

运行执行推理结果。

python3 test_lmdeploy.py

推理后我们发现直接使用2b模型不能很好的讲出梗,现在我们要对这个2b模型进行微调。

配置微调参数

让我们一起修改XTuner下 InternVL的config,文件在: /root/InternLM/code/XTuner/xtuner/configs/internvl/v2/internvl_v2_internlm2_2b_qlora_finetune.py

  • 总体config文件(复制即可)
# Copyright (c) OpenMMLab. All rights reserved.
from mmengine.hooks import (CheckpointHook, DistSamplerSeedHook, IterTimerHook,LoggerHook, ParamSchedulerHook)
from mmengine.optim import AmpOptimWrapper, CosineAnnealingLR, LinearLR
from peft import LoraConfig
from torch.optim import AdamW
from transformers import AutoTokenizerfrom xtuner.dataset import InternVL_V1_5_Dataset
from xtuner.dataset.collate_fns import default_collate_fn
from xtuner.dataset.samplers import LengthGroupedSampler
from xtuner.engine.hooks import DatasetInfoHook
from xtuner.engine.runner import TrainLoop
from xtuner.model import InternVL_V1_5
from xtuner.utils import PROMPT_TEMPLATE#######################################################################
#                          PART 1  Settings                           #
#######################################################################
# Model
path = '/root/model/InternVL2-2B'# Data
data_root = '/root/InternLM/datasets/CLoT_cn_2000/'
data_path = data_root + 'ex_cn.json'
image_folder = data_root
prompt_template = PROMPT_TEMPLATE.internlm2_chat
max_length = 6656# Scheduler & Optimizer
batch_size = 4  # per_device
accumulative_counts = 4
dataloader_num_workers = 4
max_epochs = 6
optim_type = AdamW
# official 1024 -> 4e-5
lr = 2e-5
betas = (0.9, 0.999)
weight_decay = 0.05
max_norm = 1  # grad clip
warmup_ratio = 0.03# Save
save_steps = 1000
save_total_limit = 1  # Maximum checkpoints to keep (-1 means unlimited)#######################################################################
#            PART 2  Model & Tokenizer & Image Processor              #
#######################################################################
model = dict(type=InternVL_V1_5,model_path=path,freeze_llm=True,freeze_visual_encoder=True,quantization_llm=True,  # or Falsequantization_vit=False,  # or True and uncomment visual_encoder_lora# comment the following lines if you don't want to use Lora in llmllm_lora=dict(type=LoraConfig,r=128,lora_alpha=256,lora_dropout=0.05,target_modules=None,task_type='CAUSAL_LM'),# uncomment the following lines if you don't want to use Lora in visual encoder # noqa# visual_encoder_lora=dict(#     type=LoraConfig, r=64, lora_alpha=16, lora_dropout=0.05,#     target_modules=['attn.qkv', 'attn.proj', 'mlp.fc1', 'mlp.fc2'])
)#######################################################################
#                      PART 3  Dataset & Dataloader                   #
#######################################################################
llava_dataset = dict(type=InternVL_V1_5_Dataset,model_path=path,data_paths=data_path,image_folders=image_folder,template=prompt_template,max_length=max_length)train_dataloader = dict(batch_size=batch_size,num_workers=dataloader_num_workers,dataset=llava_dataset,sampler=dict(type=LengthGroupedSampler,length_property='modality_length',per_device_batch_size=batch_size * accumulative_counts),collate_fn=dict(type=default_collate_fn))#######################################################################
#                    PART 4  Scheduler & Optimizer                    #
#######################################################################
# optimizer
optim_wrapper = dict(type=AmpOptimWrapper,optimizer=dict(type=optim_type, lr=lr, betas=betas, weight_decay=weight_decay),clip_grad=dict(max_norm=max_norm, error_if_nonfinite=False),accumulative_counts=accumulative_counts,loss_scale='dynamic',dtype='float16')# learning policy
# More information: https://github.com/open-mmlab/mmengine/blob/main/docs/en/tutorials/param_scheduler.md  # noqa: E501
param_scheduler = [dict(type=LinearLR,start_factor=1e-5,by_epoch=True,begin=0,end=warmup_ratio * max_epochs,convert_to_iter_based=True),dict(type=CosineAnnealingLR,eta_min=0.0,by_epoch=True,begin=warmup_ratio * max_epochs,end=max_epochs,convert_to_iter_based=True)
]# train, val, test setting
train_cfg = dict(type=TrainLoop, max_epochs=max_epochs)#######################################################################
#                           PART 5  Runtime                           #
#######################################################################
# Log the dialogue periodically during the training process, optional
tokenizer = dict(type=AutoTokenizer.from_pretrained,pretrained_model_name_or_path=path,trust_remote_code=True)custom_hooks = [dict(type=DatasetInfoHook, tokenizer=tokenizer),
]# configure default hooks
default_hooks = dict(# record the time of every iteration.timer=dict(type=IterTimerHook),# print log every 10 iterations.logger=dict(type=LoggerHook, log_metric_by_epoch=False, interval=10),# enable the parameter scheduler.param_scheduler=dict(type=ParamSchedulerHook),# save checkpoint per `save_steps`.checkpoint=dict(type=CheckpointHook,save_optimizer=False,by_epoch=False,interval=save_steps,max_keep_ckpts=save_total_limit),# set sampler seed in distributed evrionment.sampler_seed=dict(type=DistSamplerSeedHook),
)# configure environment
env_cfg = dict(# whether to enable cudnn benchmarkcudnn_benchmark=False,# set multi process parametersmp_cfg=dict(mp_start_method='fork', opencv_num_threads=0),# set distributed parametersdist_cfg=dict(backend='nccl'),
)# set visualizer
visualizer = None# set log level
log_level = 'INFO'# load from which checkpoint
load_from = None# whether to resume training from the loaded checkpoint
resume = False# Defaults to use random seed and disable `deterministic`
randomness = dict(seed=None, deterministic=False)# set log processor
log_processor = dict(by_epoch=False)
开始训练

这里使用之前搞好的configs进行训练。咱们要调整一下batch size,并且使用qlora。要不半卡不够用的 QAQ。

cd XTuner

NPROC_PER_NODE=1 xtuner train /root/InternLM/code/XTuner/xtuner/configs/internvl/v2/internvl_v2_internlm2_2b_qlora_finetune.py  --work-dir /root/InternLM/work_dir/internvl_ft_run_8_filter  --deepspeed deepspeed_zero1

合并权重&&模型转换

用官方脚本进行权重合并

cd XTuner
# transfer weights
python3 xtuner/configs/internvl/v1_5/convert_to_official.py xtuner/configs/internvl/v2/internvl_v2_internlm2_2b_qlora_finetune.py /root/InternLM/work_dir/internvl_ft_run_8_filter/iter_3000.pth /root/InternLM/InternVL2-2B/

最后我们的模型在:/root/InternLM/convert_model/,文件格式:

.
|-- added_tokens.json
|-- config.json
|-- configuration_intern_vit.py
|-- configuration_internlm2.py
|-- configuration_internvl_chat.py
|-- conversation.py
|-- generation_config.json
|-- model.safetensors
|-- modeling_intern_vit.py
|-- modeling_internlm2.py
|-- modeling_internvl_chat.py
|-- special_tokens_map.json
|-- tokenization_internlm2.py
|-- tokenizer.model
`-- tokenizer_config.json

微调后效果对比

现在我们微调好啦,让我们再来试试这张图片吧!

from lmdeploy import pipeline
from lmdeploy.vl import load_imagepipe = pipeline('/root/InternLM/InternVL2-2B')image = load_image('/root/InternLM/007aPnLRgy1hb39z0im50j30ci0el0wm.jpg')
response = pipe(('请你根据这张图片,讲一个脑洞大开的梗', image))
print(response.text)
  • cd /root/InternLM/code
  • python3 test_lmdeploy.py

 换张图片

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/439427.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Brave编译指南2024 MacOS篇-构建与运行(六)

引言 在上一篇文章中,我们成功初始化了Brave浏览器的构建环境。现在,我们进入了这个编译指南的核心部分:实际构建Brave浏览器并运行它。这个过程将把我们之前准备的所有源代码和依赖项转化为一个可运行的浏览器实例。 1. 编译Brave浏览器 …

【进阶OpenCV】 (5)--指纹验证

文章目录 指纹验证1. 验证原理2. 读取图片3. 计算特征匹配点 总结 指纹验证 指纹验证基于人类指纹的独特性和稳定性。每个人的指纹在图案、断点和交叉点上各不相同,这种唯一性和终生不变性使得指纹成为身份验证的可靠手段。指纹识别技术通过采集和分析指纹图像&…

docker 部署nacos

目录 一、拉取镜像 二、部署 三、访问(默认是用内嵌数据库) 四、配置 五、重启容器 一、拉取镜像 docker pull nacos/nacos-server 二、部署 docker run --name nacos -d -p 8848:8848 -p 9848:9848 -p 9849:9849 --restartalways --privilegedt…

算法笔记(十)——队列+宽搜

文章目录 N 叉数的层序遍历二叉树的锯齿形层序遍历二叉树最大宽度在每个树行中找最大值 BFS是图上最基础、最重要的搜索算法之一; 每次都尝试访问同一层的节点如果同一层都访问完了,再访问下一层 BFS基本框架 void bfs(起始点) {将起始点放入队列中;标记…

Docker启动 Redis提示:Can‘t initialize Background Jobg

问题说明: 在使用docker启动redis失败,但是查看容器日志,除了提示 Fatal:Cant initialize Background Jobg,没有其他错误信息。经过长时间查找资料及试错,现记录下可能的产生原因及解决方案,以便以后参考。 产生原因&…

【漏洞复现】锐捷 RG-EW1200G 无线路由器 登录绕过

》》》产品描述《《《 锐捷网络RG-EW1200G是一款有线无线全千兆双频无线路由器Q,适合平层家居、别墅、小型店铺、SOHO办公等场景使用。设备性能卓越,足以满足千兆上网需求;信号强劲,信号功率功率提升3倍,覆盖距离提升近1倍覆盖能力…

【Linux】进程间关系与守护进程

超出能力之外的事, 如果永远不去做, 那你就永远无法进步。 --- 乌龟大师 《功夫熊猫》--- 进程间关系与守护进程 1 进程组2 会话3 控制终端4 作业控制5 守护进程 1 进程组 之前我们提到了进程的概念, 其实每一个进程除了有一个进程 ID(P…

算法: 二分查找题目练习

文章目录 二分查找二分查找在排序数组中查找元素的第一个和最后一个位置搜索插入位置x 的平方根山脉数组的峰顶索引寻找峰值寻找旋转排序数组中的最小值点名 总结精华模版 二分查找 二分查找 没啥可说的,轻轻松松~ class Solution {public int search(int[] nums, int target…

Pragmatic Task务实任务——指导语义通信的优化

1. 语义通信 语义通信(Semantic Communication)的核心理念是传递不仅仅是数据本身,而是数据所包含的“语义”或“意义”。这与传统通信系统不同,传统系统只注重如何准确、高效地传输数据,而语义通信则要求传输的信息能…

畅阅读小程序|畅阅读系统|基于java的畅阅读系统小程序设计与实现(源码+数据库+文档)

畅阅读系统小程序 目录 基于java的畅阅读系统小程序设计与实现 一、前言 二、系统功能设计 三、系统实现 四、数据库设计 1、实体ER图 五、核心代码 六、论文参考 七、最新计算机毕设选题推荐 八、源码获取: 博主介绍:✌️大厂码农|毕设布道师…

基金好书入门阅读笔记《基金作战笔记:从投基新手到配置高手的进阶之路》1

今年的新书《基金作战笔记:从投基新手到配置高手的进阶之路》,趁着国庆前这个风潮,拿来学习下。 第一章 军规 军规1:莫求暴富,为自己设定一个长期目标。 军规2:永不满仓,找到自己的资产配置中…

Pikachu-Sql Inject-数字型注入(GET)

一、、破解 SQL 查询语句中的字段数 ?id1 order by 3 -- // -- 是注释, 加号 在MySQL中会转成空格 order by 1 ,by 数字几,就是按照第几列进行排序;如果没有这一行,则报错 如:以下语句,根据…

Pytorch实现RNN实验

一、实验要求 用 Pytorch 模块的 RNN 实现生成唐诗。要求给定一个字能够生成一首唐诗。 二、实验目的 理解循环神经网络(RNN)的基本原理:通过构建一个基于RNN的诗歌生成模型,学会RNN是如何处理序列数据的,以及如何在…

微信小程序使用picker,数组怎么设置默认值

默认先显示请选择XXX。然后点击弹出选择列表。如果默认value是0的话&#xff0c;他就直接默认显示数组的第一个了。<picker mode"selector" :value"planIndex" :range"planStatus" range-key"label" change"bindPlanChange&qu…

使用Conda管理python环境的指南

1. 准备 .yml 文件 确保你有一个定义了 Conda 环境的 .yml 文件。这个文件通常包括环境的依赖和配置设置。文件内容可能如下所示&#xff1a; name: myenv channels:- defaults dependencies:- python3.8- numpy- pandas- scipy- pip- pip:- torch- torchvision- torchaudio2…

OpenCV马赛克

#马赛克 import cv2 import numpy as np import matplotlib.pyplot as pltimg cv2.imread(coins.jpg,1) imgInfo img.shape height imgInfo[0] width imgInfo[1]for m in range(200,400): #m,n表示打马赛克区域for n in range(200,400):# pixel ->10*10if m%10 0 and …

Hive数仓操作(十七)

一、Hive的存储 一、Hive 四种存储格式 在 Hive 中&#xff0c;支持四种主要的数据存储格式&#xff0c;每种格式有其特点和适用场景&#xff0c;不过一般只会使用Text 和 ORC &#xff1a; 1. Text 说明&#xff1a;Hive 的默认存储格式。存储方式&#xff1a;行存储。优点…

华硕天选笔记本外接音箱没有声音

系列文章目录 文章目录 系列文章目录一.前言二.解决方法第一种方法第二种方法 一.前言 华硕天选笔记本外接音箱没有声音&#xff0c;在插上外接音箱时&#xff0c;系统会自动弹出下图窗口 二.解决方法 第一种方法 在我的电脑上选择 Headphone Speaker Out Headset 这三个选项…

Custom C++ and CUDA Extensions - PyTorch

0. Abstract 经历了一波 pybind11 和 CUDA 编程 的学习, 接下来看一看 PyTorch 官方给的 C/CUDA 扩展的教程. 发现极其简单, 就是直接用 setuptools 导出 PyTorch C 版代码的 Python 接口就可以了. 所以, 本博客包含以下内容: LibTorch 初步;C Extension 例子; 1. LibTorch …

国庆刷题(day4)

C语言&#xff1a; C&#xff1a;