[C++]使用纯opencv部署yolov11-pose姿态估计onnx模型

【算法介绍】

使用纯OpenCV部署YOLOv11-Pose姿态估计ONNX模型是一项具有挑战性的任务,因为YOLOv11通常是用PyTorch等深度学习框架实现的,而OpenCV本身并不直接支持加载和运行PyTorch模型。然而,可以通过一些间接的方法来实现这一目标,即将PyTorch模型转换为ONNX格式,然后使用OpenCV的DNN模块加载ONNX模型。

YOLOv11-Pose结合了YOLO(You Only Look Once)的高效物体检测算法和Pose Estimation(姿态估计)专注于识别人体关键点的能力,能在多种计算平台上实时处理人体姿态数据。其采用的核心原理是特殊神经网络结构YOLOv3-tiny,能快速计算出图像中所有人体关键点的位置,实现姿态估计。同时,该模型还采用了ONNX格式,这是一种开放的模型表示,使得模型能在不同的深度学习框架和工具之间轻松转换。

在使用OpenCV部署YOLOv11-Pose ONNX模型时,需要确保开发环境已经安装了OpenCV 4.x(带有DNN模块)和必要的C++编译器。具体步骤包括加载ONNX模型、预处理输入图像、将预处理后的图像输入到模型中获取检测结果、对检测结果进行后处理等。由于YOLOv11是一个复杂的模型,其输出可能包含多个层的信息,因此需要仔细解析模型输出,并根据YOLOv11的具体实现进行后处理。

总的来说,使用纯OpenCV部署YOLOv11-Pose ONNX模型需要深入理解相关领域的知识,包括YOLOv11的模型架构、OpenCV的DNN模块以及ONNX格式等。

【效果展示】

【实现代码】

#include <iostream>
#include<opencv2/opencv.hpp>#include<math.h>
#include "yolov11_pose.h"
#include<time.h>
#define  VIDEO_OPENCV //if define, use opencv for video.using namespace std;
using namespace cv;
using namespace dnn;template<typename _Tp>
int yolov11(_Tp& task, cv::Mat& img, std::string& model_path)
{cv::dnn::Net net;if (task.ReadModel(net, model_path, false)) {std::cout << "read net ok!" << std::endl;}else {return -1;}//生成随机颜色std::vector<cv::Scalar> color;srand(time(0));for (int i = 0; i < 80; i++) {int b = rand() % 256;int g = rand() % 256;int r = rand() % 256;color.push_back(cv::Scalar(b, g, r));}std::vector<OutputParams> result;bool isPose = false;if (typeid(task) == typeid(Yolov8Pose)) {isPose = true;}PoseParams poseParams;if (task.Detect(img, net, result)) {if (isPose)DrawPredPose(img, result, poseParams);elseDrawPred(img, result, task._className, color);}else {std::cout << "Detect Failed!" << std::endl;}system("pause");return 0;
}template<typename _Tp>
int video_demo(_Tp& task, std::string& model_path)
{std::vector<cv::Scalar> color;srand(time(0));for (int i = 0; i < 80; i++) {int b = rand() % 256;int g = rand() % 256;int r = rand() % 256;color.push_back(cv::Scalar(b, g, r));}std::vector<OutputParams> result;cv::VideoCapture cap("video.avi");if (!cap.isOpened()){std::cout << "open capture failured!" << std::endl;return -1;}cv::Mat frame;bool isPose = false;PoseParams poseParams;
#ifdef VIDEO_OPENCVcv::dnn::Net net;if (typeid(task) == typeid(Yolov11Pose)) {isPose = true;}if (task.ReadModel(net, model_path, true)) {std::cout << "read net ok!" << std::endl;}else {std::cout << "read net failured!" << std::endl;return -1;}#elseif (typeid(task) == typeid(Yolov8PoseOnnx)) {isPose = true;}if (task.ReadModel(model_path, true)) {std::cout << "read net ok!" << std::endl;}else {std::cout << "read net failured!" << std::endl;return -1;}#endifwhile (true){cap.read(frame);if (frame.empty()){std::cout << "read to end" << std::endl;break;}result.clear();
#ifdef VIDEO_OPENCVif (task.Detect(frame, net, result)) {if (isPose)DrawPredPose(frame, result, poseParams,true);elseDrawPred(frame, result, task._className, color,true);}
#elseif (task.OnnxDetect(frame, result)) {if (isPose)DrawPredPose(frame, result, poseParams, true);elseDrawPred(frame, result, task._className, color, true);}
#endifint k = waitKey(10);if (k == 27) { //esc break;}}cap.release();system("pause");return 0;
}int main() {string detect_model_path = "./yolo11n-pose.onnx";Yolov11Pose detector;video_demo(detector, detect_model_path);
}

【视频演示】

C++使用纯opencv部署yolov11-pose姿态估计onnx模型_哔哩哔哩_bilibili【测试环境】vs2019 cmake==3.24.3 opencv==4.8.0【运行步骤】下载模型:https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt转换模型:yolo export model=yolo11n-pose.pt format=onnx dynamic=False opset=, 视频播放量 0、弹幕量 0、点赞数 0、投硬币枚数 0、收藏人数 0、转发人数 0, 视频作者 未来自主研究中心, 作者简介 未来自主研究中心,相关视频:用C#部署yolov8的tensorrt模型进行目标检测winform最快检测速度,使用易语言调用opencv进行视频和摄像头每一帧处理,C#使用纯OpenCvSharp部署yolov8-pose姿态识别,C# winform部署yolov11目标检测的onnx模型,基于opencv封装易语言读写视频操作模块支持视频读取和写出,使用C++部署yolov8的onnx和bytetrack实现目标追踪,C++使用yolov11的onnx模型结合opencv和bytetrack实现目标追踪,yolov5-7.0部署在ros机器人操作系统视频演示,使用C#部署openvino-yolov5s模型,使用C#调用libotrch-yolov5模型实现全网最快winform目标检测icon-default.png?t=O83Ahttps://www.bilibili.com/video/BV1491XY2EWk/
【源码下载】

https://download.csdn.net/download/FL1623863129/89847502


【测试环境】

vs2019
cmake==3.24.3
opencv==4.8.0

【运行步骤】

下载模型:https://github.com/ultralytics/assets/releases/download/v8.3.0/yolo11n-pose.pt

转换模型:yolo export model=yolo11n-pose.pt format=onnx dynamic=False opset=12 

编译项目源码,将模型,视频路径对应到源码即可运行

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/440066.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

POLYGON Nature - Low Poly 3D Art by Synty 树木植物

一个低多边形资源包,包含可以添加到现有多边形风格游戏中的树木、植物、地形、岩石、道具和特效 FX 资源。 为 POLYGON 系列提供混合样式树这一新增功能。弥合 POLYGON 与更传统的层级资源之间的差距。还提供了一组经典的 POLYGON 风格的树木和植被以满足你的需求。 该包还附带…

系统安全 - Linux /Docker 安全模型及实践

文章目录 导图Linux安全Linux 安全模型用户层权限管理的细节多用户环境中的权限管理文件权限与目录权限 最小权限原则的应用Linux 系统中的认证、授权和审计机制认证机制授权机制审计机制 小结 内网安全Docker安全1. Docker 服务隔离机制Namespace 机制Capabilities 机制CGroup…

JavaWeb - 8 - 请求响应 分层解耦

请求响应 请求&#xff08;HttpServletRequest&#xff09;&#xff1a;获取请求数据 响应&#xff08;HttpServletResponse&#xff09;&#xff1a;设置响应数据 BS架构&#xff1a;Browser/Server&#xff0c;浏览器/服务器架构模式。客户端只需要浏览器&#xff0c;应用程…

Oracle中MONTHS_BETWEEN()函数详解

文章目录 前言一、MONTHS_BETWEEN()的语法二、主要用途三、测试用例总结 前言 在Oracle数据库中&#xff0c;MONTHS_BETWEEN()函数可以用来计算两个日期之间的月份差。它返回一个浮点数&#xff0c;表示两个日期之间的整月数。 一、MONTHS_BETWEEN()的语法 MONTHS_BETWEEN(dat…

水下声呐数据集,带标注

水下声呐数据集&#xff0c;带标注 水下声呐数据集 数据集名称 水下声呐数据集 (Underwater Sonar Dataset) 数据集概述 本数据集是一个专门用于训练和评估水下目标检测与分类模型的数据集。数据集包含大量的水下声呐图像&#xff0c;每张图像都经过专业标注&#xff0c;标明…

vSAN05:vSAN延伸集群简介与创建、资源要求与计算、高级功能配置、维护、故障处理

目录 vSAN延伸集群延伸集群创建延伸集群的建议网络配置vSAN延伸集群的端口见证主机的资源要求vSAN延伸集群中见证节点带宽占用vSAN延伸集群的允许故障数vSAN延伸集群不同配置下的空间占用 vSAN延伸集群的HA配置vSAN延伸集群的DRS配置vSAN存储策略以及虚拟机/主机策略的互操作vS…

华为最新业绩出炉!上半年营收4175亿元,同比增长34%!

华为2024年上半年经营业绩分析:稳健发展,符合预期 [中国,深圳,2024年8月29日] 今日,华为发布了其2024年上半年的经营业绩,整体表现稳健,结果符合预期。在复杂多变的全球市场环境下,华为凭借强大的创新能力和市场洞察力,实现了销售收入和净利润的显著增长。 上半年,华…

C语言:预编译过程的剖析

目录 一.预定义符号和#define定义常量 二.#define定义宏 三.宏和函数的对比 四、#和##运算符 五、条件编译 在之前&#xff0c;我们已经介绍了.c文件在运行的过程图解&#xff0c;大的方面要经过两个方面。 一、翻译环境 1.预处理&#xff08;预编译&#xff09; 2.编译 3…

Spring Boot 整合 Keycloak

1、概览 本文将带你了解如何设置 Keycloak 服务器&#xff0c;以及如何使用 Spring Security OAuth2.0 将 Spring Boot 应用连接到 Keycloak 服务器。 2、Keycloak 是什么&#xff1f; Keycloak 是针对现代应用和服务的开源身份和访问管理解决方案。 Keycloak 提供了诸如单…

Unity MVC框架演示 1-1 理论分析

本文仅作学习笔记分享与交流&#xff0c;不做任何商业用途&#xff0c;该课程资源来源于唐老狮 1.一般的图解MVC 什么是MVC我就不说了&#xff0c;老生常谈&#xff0c;网上有大量的介绍&#xff0c;想看看这三层都起到什么职责&#xff1f;那就直接上图吧 2.我举一个栗子 我有…

人工智能新闻和发展 (24001)- By 10/4/2024

1. 谷歌增强了搜索中的人工智能&#xff0c;允许对图像进行语音提问。 Google adding AI to answer voiced questions about images | AP NewsGoogle is pumping more artificial intelligence into its search engine. New features will enable people to voice questions a…

15分钟学 Python 第39天:Python 爬虫入门(五)

Day 39&#xff1a;Python 爬虫入门数据存储概述 在进行网页爬虫时&#xff0c;抓取到的数据需要存储以供后续分析和使用。常见的存储方式包括但不限于&#xff1a; 文件存储&#xff08;如文本文件、CSV、JSON&#xff09;数据库存储&#xff08;如SQLite、MySQL、MongoDB&a…

无神论文解读之ControlNet:Adding Conditional Control to Text-to-Image Diffusion Models

一、什么是ControlNet ControlNet是一种能够控制模型生成内容的方法&#xff0c;能够对文生图等模型添加限制信息&#xff08;边缘、深度图、法向量图、姿势点图等&#xff09;&#xff0c;在当今生成比较火的时代很流行。 这种方法使得能够直接提供空间信息控制图片以更细粒…

PCL 1.8.1 + VTK 1.8.0 + QT5.14.2+ VS2017 环境搭建

先看看效果: PCL 1.8.1下载安装: Tags PointCloudLibrary/pcl GitHub 安装完成后: 如果VTK想重新编译的,可以看我的这篇博客:

Spring14——案例:利用AOP环绕通知计算业务层接口执行效率

前面介绍了这么多种通知类型&#xff0c;具体该选哪一种呢? 我们可以通过一些案例加深下对通知类型的学习。 34-案例&#xff1a;利用AOP环绕通知计算业务层接口执行效率 需求分析 这个需求也比较简单&#xff0c;前面我们在介绍AOP的时候已经演示过: 需求:任意业务层接口…

冯诺依曼体系|操作系统

目录 一、硬件&#xff1a;冯诺依曼体系 1.冯诺依曼体系结构 2.冯诺依曼体系结构组成 3.内存的重要性 &#xff08;1&#xff09;提升运行速度 &#xff08;2&#xff09;提升运行效率 二、软件&#xff1a;操作系统 1.什么是操作系统 &#xff08;1&#xff09;内部理…

【GeekBand】C++设计模式笔记6_Decorator_装饰模式

1. “单一职责”模式 在软件组件的设计中&#xff0c;如果责任划分的不清晰&#xff0c;使用继承得到的结果往往是随着需求的变化&#xff0c;子类急剧膨胀&#xff0c;同时充斥着重复代码&#xff0c;这时候的关键是划清责任。典型模式 DecoratorBridge 2. Decorator 装饰模…

地理空间数据存储与处理:MySQL空间数据类型的优化与应用!

在 MySQL 数据库中&#xff0c;空间数据类型用于存储和处理地理空间数据。这些数据类型允许我们在开发时可在数据库中存储和操作地理位置、几何形状和地理空间关系等信息。 一、什么是空间数据类型 MySQL 中的空间数据类型主要包括以下几种&#xff1a; GEOMETRY&#xff1a…

iMazing只能苹果电脑吗 Win和Mac上的iMazing功能有区别吗

在当今数字时代&#xff0c;管理和备份手机数据变得越来越重要。无论是转移照片、备份短信&#xff0c;还是管理应用程序&#xff0c;一个强大的工具可以大大简化这些操作。iMazing作为一款备受好评的iOS设备管理软件&#xff0c;已经成为许多用户的选择。但是&#xff0c;许多…

SpringBoot+ElasticSearch7.12.1+Kibana7.12.1简单使用

案例简介 本案例是把日志数据保存到Elasticsearch的索引中&#xff0c;并通过Kibana图形化界面的开发工具给查询出来添加的日志数据&#xff0c;完成从0到1的简单使用 ElasticSearch职责用法简介 ElasticSearch用在哪 ElasticSearch在我这个案例中&#xff0c;不是用来缓解增…