【C++】二叉搜索树+变身 = AVL树

头像
🚀个人主页:@小羊
🚀所属专栏:C++
很荣幸您能阅读我的文章,诚请评论指点,欢迎欢迎 ~

动图描述

目录

  • 前言
  • 一、AVL树
  • 二、AVL树的实现
    • 2.1 平衡因子
    • 2.2 旋转处理
      • 2.2.1 左单旋:插入新节点后单纯的右边高
      • 2.2.2 右单旋:插入新节点后单纯的左边高
      • 2.2.3 左右旋:插入新节点后不是单纯的左边高
      • 2.2.4 右左旋:插入新节点后不是单纯的右边高
    • 2.3 验证AVL树的平衡
  • 三、完整代码


前言

本文仅适合了解二叉搜索树,但不了解AVL树底层原理的同学阅读哦。

本篇文章不会带你从头到尾实现AVL树,但会带你深入理解AVL树是怎么实现平衡的,怎么通过旋转变换实现保持平衡,以及实现平衡过程中的细节应该怎么处理等。


一、AVL树

前面的文章中我们分析过二叉搜索树的性能,得到的结果是理想情况下二叉搜索树的时间复杂度为O(LogN),但在极端情况下(即树蜕化为单边树时),这些操作的时间复杂度会退化为O(n),即使情况不那么极端,效率也不是特别高。

为了防止二叉搜索树出现一边偏高的情况,就需要想办法让二叉搜索树尽量保持平衡,所以两位苏联数学家(或称为俄罗斯数学家)G.M. Adelson-Velsky和E.M. Landis就发明了AVL树,其任何节点的两个子树的高度最大差别为1。

AVL树是具有一下性质的二叉搜索树:

  • 其左右子树都是AVL树
  • 左右子树高度差不超过1

二、AVL树的实现

本篇文章将沿用之前文章中Key-Value模型的代码,不再从底层开始实现,主要介绍在插入新节点后如何保持二叉搜索树的平衡问题。

2.1 平衡因子

如何保证AVL树的左右子树高度差不超过1?在AVL树的每个节点中存一个平衡因子,本文我们定义平衡因子 = 此节点右子树的高度 - 左子树的高度

  • 插入在左子树,平衡因子 - -
  • 插入在右子树,平衡因子++

更新祖先节点的平衡因子时,我们首先需要找到祖先节点,因此每个节点中还需要增加一个指向父节点的指针。
按照我们的需求,其AVL树的节点可以定义为:

template<class K, class V>
struct AVLTreeNode
{pair<K, V> _kv;AVLTreeNode<K, V>* _left;AVLTreeNode<K, V>* _right;AVLTreeNode<K, V>* _parent;int _bf;//平衡因子//构造AVLTreeNode(const pair<K, V>& kv):_kv(kv),_left(nullptr),_right(nullptr),_parent(nullptr),_bf(0){}
}

是否继续往上更新祖先节点的平衡因子,要看parent所在子树的高度是否发生变化。

插入新节点后其父节点的平衡因子有以下几种情况:

  1. parent的平衡因子 == 0
    parent的平衡因子更新前是 -1 / 1,新节点插入在矮的那边,高度不变,不再往上更新
  2. parent的平衡因子 == 1 / -1
    parent的平衡因子更新前是0,parent所在子树高度都变化了,需要往上更新
  3. parent的平衡因子 == 2 / -2
    parent的平衡因子更新前是 -1 / 1,插入新节点后树不再平衡,需要旋转处理
pcur = new Node(kv);
if (parent->_kv.first > kv.first)//判断新节点应该插入左还是右
{parent->_left = pcur;
}
else
{parent->_right = pcur;
}
pcur->_parent = parent;//与父节点链接关系while (parent)//有可能更新到根节点去
{parent->_bf = parent->_left == pcur ? parent->_bf - 1 : parent->_bf + 1;if (parent->_bf == 0)//插入前后高度不变{break;}else if (parent->_bf == 1 || parent->_bf == -1){//高度变了,继续往上更新pcur = parent;parent = parent->_parent;}else if (parent->_bf == 2 || parent->_bf == -2){//插入节点后二叉树不平衡了,需要旋转处理}else{assert(false);//检测AVL树是否异常}
}

2.2 旋转处理

当二叉搜索树出现不平衡的情况时,需要旋转处理,对应插入后二叉搜索树的各种情况,主要有四种旋转的方式来保持平衡。

其中:

  • h代表子树的高度,可以是0、1、2…
  • 我们用能代表所有情况的四种类型的抽象图来研究旋转方式,单纯研究某几种情况没有意义

原则:

  1. 保持搜索树的性质
  2. 降低高度,控制平衡

2.2.1 左单旋:插入新节点后单纯的右边高

在这里插入图片描述

旋转处理过程中,我们主要关注三个节点(以上图为例):10(标记为parent)、30(标记为subR)、b(标记为subLR)。

在旋转过程中,有以下几种情况需要考虑:

  1. subR的左孩子可能存在,也可能不存在
  2. parent可能是根节点,也可能是子树。如果是根节点,旋转完成后,要更新根节点;如果是子树,可能是某个节点的左子树,也可能是右子树
//左单旋
void RotateL(Node* parent)
{Node* subR = parent->_right;Node* subRL = subR->_left;//subRL是有可能为空的parent->_right = subRL;subR->_left = parent;Node* parentparent = parent->_parent;parent->_parent = subR;if (parentparent == nullptr)//subR有可能变成根{_root = subR;}else{if (parentparent->_left == parent){parentparent->_left = subR;}else{parentparent->_right = subR;}}subR->_parent = parentparent;if (subRL){subRL->_parent = parent;}parent->_bf = subR->_bf = 0;//更新平衡因子
}

旋转处理过程中主要是处理各节点的父节点指针的指向和平衡因子的更新。


2.2.2 右单旋:插入新节点后单纯的左边高

在这里插入图片描述

其处理方式和左单旋相似,可参考左单旋。

//右单旋
void RotateR(Node* parent)
{Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;subL->_right = parent;Node* parentparent = parent->_parent;parent->_parent = subL;if (parentparent == nullptr){_root = subL;}else{if (parentparent->_left == parent){parentparent->_left = subL;}else{parentparent->_right = subL;}}subL->_parent = parentparent;if (subLR){subLR->_parent = parent;}subL->_bf = parent->_bf = 0;
}

2.2.3 左右旋:插入新节点后不是单纯的左边高

在这里插入图片描述

这种情况只用左旋或右旋只会原地打转,不能降低平衡。
我们需要先对subL进行左单旋,再对parent进行右单旋,最后更新平衡因子。

  • 双旋后平衡因子的更新要根据插入新节点后subLR的平衡因子来分情况讨论
  • 双旋最终结果是把subLR推到最上面,让其平衡因子为0
//左右旋
void RotateLR(Node* parent)
{Node* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->_bf;RotateL(parent->_left);RotateR(parent);if (bf == 0){parent->_bf = 0;subL->_bf = 0;subLR->_bf = 0;}else if (bf == -1){parent->_bf = 1;subL->_bf = 0;subLR->_bf = 0;}else if (bf == 1){parent->_bf = 0;subL->_bf = -1;subLR->_bf = 0;}else{assert(false);}
}

2.2.4 右左旋:插入新节点后不是单纯的右边高

在这里插入图片描述

可参考左右旋。

//右左旋
void RotateRL(Node* parent)
{Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;RotateR(parent->_right);RotateL(parent);if (bf == 0){parent->_bf = 0;subR->_bf = 0;subRL->_bf = 0;}else if (bf == -1){parent->_bf = 0;subR->_bf = 1;subRL->_bf = 0;}else if (bf == 1){parent->_bf = -1;subR->_bf = 0;subRL->_bf = 0;}else{assert(false);}
}

旋转完成后,原parent为根的子树个高度降低,已经平衡,不需要再向上更新。


2.3 验证AVL树的平衡

我们可以分别计算出其左子树和右子树的高度,将其相减的值与节点中记录的平衡因子的值比较,看是否符合我们的预期。

int _Height(Node* root)
{if (root == nullptr){return 0;}int leftheight = _Height(root->_left);int rightheight = _Height(root->_right);return leftheight > rightheight ? leftheight + 1 : rightheight + 1;
}bool _isBalanceTree(Node* root)
{if (root == nullptr){return true;}int leftheight = _Height(root->_left);int rightheight = _Height(root->_right);int bf = rightheight - leftheight;if (abs(bf) > 1){cout << root->_kv.first << "高度差异常" << endl;return false;}if (root->_bf != bf){cout << root->_kv.first << "平衡因子异常" << endl;return false;}return _isBalanceTree(root->_left) && _isBalanceTree(root->_right);
}

三、完整代码

template<class K, class V>
struct AVLTreeNode
{pair<K, V> _kv;AVLTreeNode<K, V>* _left;AVLTreeNode<K, V>* _right;AVLTreeNode<K, V>* _parent;int _bf;//平衡因子AVLTreeNode(const pair<K, V>& kv):_kv(kv),_left(nullptr),_right(nullptr),_parent(nullptr),_bf(0){}
};template<class K, class V>
class AVLTree
{typedef AVLTreeNode<K, V> Node;
public:AVLTree() = default;AVLTree(const AVLTree<K, V>& t){_root = copy(t._root);}AVLTree<K, V>& operator=(AVLTree<K, V> t){swap(_root, t._root);return *this;}~AVLTree(){Destroy(_root);_root = nullptr;}bool Find(const K& key){Node* pcur = _root;while (pcur){if (key < pcur->_kv.first){pcur = pcur->_left;}else if (key > pcur->_kv.first){pcur = pcur->_right;}else{return true;}}return false;}bool Insert(const pair<K, V>& kv){//没有节点时需要单独处理if (_root == nullptr){_root = new Node(kv);return true;}Node* pcur = _root;Node* parent = nullptr;while (pcur){if (kv.first < pcur->_kv.first){parent = pcur;pcur = pcur->_left;}else if (kv.first > pcur->_kv.first){parent = pcur;pcur = pcur->_right;}else{return false;}}pcur = new Node(kv);if (parent->_kv.first > kv.first)//判断新节点应该插入左还是右{parent->_left = pcur;}else{parent->_right = pcur;}pcur->_parent = parent;//与父节点链接关系//更新平衡因子while (parent)//有可能更新到根节点去{parent->_bf = parent->_left == pcur ? parent->_bf - 1 : parent->_bf + 1;if (parent->_bf == 0)//插入前后高度不变{break;}else if (parent->_bf == 1 || parent->_bf == -1){//高度变了,继续往上更新pcur = parent;parent = parent->_parent;}else if (parent->_bf == 2 || parent->_bf == -2){//插入节点后二叉树不平衡了,需要旋转处理if (parent->_bf == 2 && pcur->_bf == 1){RotateL(parent);}else if (parent->_bf == -2 && pcur->_bf == -1){RotateR(parent);}else if (parent->_bf == 2 && pcur->_bf == -1){RotateRL(parent);}else if (parent->_bf == -2 && pcur->_bf == 1){RotateLR(parent);}break;//不管是哪种情况,旋转完后子树的高度没有变化,所以不再调整}else{assert(false);//检测AVL树是否异常}}return true;}void InOrder(){_InOrder(_root);cout << endl;}bool IsBalanceTree(){return _isBalanceTree(_root);}private://左单旋void RotateL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;//subRL是有可能为空的parent->_right = subRL;subR->_left = parent;Node* parentparent = parent->_parent;parent->_parent = subR;if (parentparent == nullptr)//subR有可能变成根{_root = subR;}else{if (parentparent->_left == parent){parentparent->_left = subR;}else{parentparent->_right = subR;}}subR->_parent = parentparent;if (subRL){subRL->_parent = parent;}parent->_bf = subR->_bf = 0;//更新平衡因子}//右单旋void RotateR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;parent->_left = subLR;subL->_right = parent;Node* parentparent = parent->_parent;parent->_parent = subL;if (parentparent == nullptr){_root = subL;}else{if (parentparent->_left == parent){parentparent->_left = subL;}else{parentparent->_right = subL;}}subL->_parent = parentparent;if (subLR){subLR->_parent = parent;}subL->_bf = parent->_bf = 0;}//左右旋void RotateLR(Node* parent){Node* subL = parent->_left;Node* subLR = subL->_right;int bf = subLR->_bf;RotateL(parent->_left);RotateR(parent);if (bf == 0){parent->_bf = 0;subL->_bf = 0;subLR->_bf = 0;}else if (bf == -1){parent->_bf = 1;subL->_bf = 0;subLR->_bf = 0;}else if (bf == 1){parent->_bf = 0;subL->_bf = -1;subLR->_bf = 0;}else{assert(false);}}//右左旋void RotateRL(Node* parent){Node* subR = parent->_right;Node* subRL = subR->_left;int bf = subRL->_bf;RotateR(parent->_right);RotateL(parent);if (bf == 0){parent->_bf = 0;subR->_bf = 0;subRL->_bf = 0;}else if (bf == -1){parent->_bf = 0;subR->_bf = 1;subRL->_bf = 0;}else if (bf == 1){parent->_bf = -1;subR->_bf = 0;subRL->_bf = 0;}else{assert(false);}}Node* copy(Node* root){if (root == nullptr){return nullptr;}Node* copynode = new Node(root->_kv);copynode->_left = copy(root->_left);copynode->_right = copy(root->_right);return copynode;}void Destroy(Node* root){if (root == nullptr)return;Destroy(root->_left);Destroy(root->_right);delete root;}void _InOrder(Node* root){if (root == nullptr)//递归一定要有结束条件{return;}_InOrder(root->_left);cout << root->_kv.first << ":" << root->_kv.second << endl;_InOrder(root->_right);}int _Height(Node* root){if (root == nullptr){return 0;}int leftheight = _Height(root->_left);int rightheight = _Height(root->_right);return leftheight > rightheight ? leftheight + 1 : rightheight + 1;}bool _isBalanceTree(Node* root){if (root == nullptr){return true;}int leftheight = _Height(root->_left);int rightheight = _Height(root->_right);int bf = rightheight - leftheight;if (abs(bf) > 1){cout << root->_kv.first << "高度差异常" << endl;return false;}if (root->_bf != bf){cout << root->_kv.first << "平衡因子异常" << endl;return false;}return _isBalanceTree(root->_left) && _isBalanceTree(root->_right);}private:Node* _root = nullptr;
};

本篇文章的分享就到这里了,如果您觉得在本文有所收获,还请留下您的三连支持哦~

头像

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/440123.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

MySQL--聚合查询、联合查询、子查询、合并查询(上万字超详解!!!)

目录 一、前言二、聚合查询2.1 聚合函数2.1.1 COUNT():统计所有行2.1.2 SUM(列名) 求和2.1.3 AVG()2.1.4 MAX()、MIN() 2.2 GROUP BY子句&#xff08;分组查询&#xff09;2.3 HAVING 三、联合查询3.1表的笛卡儿积3.2内连接3.2.1 例题一3.2.2 例题二 3.3外连接3.3.1 右外连接3.…

使用 Python 遍历文件夹

要解决这个问题&#xff0c;使用 Python 的标准库可以很好地完成。我们要做的是遍历目录树&#xff0c;找到所有的 text 文件&#xff0c;读取内容&#xff0c;处理空行和空格&#xff0c;并将处理后的内容合并到一个新的文件中。 整体思路&#xff1a; 遍历子目录&#xff1…

ConcurrentHashMap在JDK1.7和1.8的区别,详解

目录 1.了解HashMap底层插入原理 2.ConcurrentHashMap 是什么&#xff1f; HashTable的实现 3.ConcurrentHashMap 1.7和1.8的区别 4、JDK1.7 中的ConcurrentHashMap实现原理 6、JDK1.8中的ConcurrentHashMap 7.链表转红黑树条件 1.8 put方法 8.并发扩容 9.总结 首先呢…

Vite多环境配置与打包:

环境变量必须以VITE开头 1.VITE_BASE_API&#xff1a; 在开发环境中设置为 /dev-api&#xff0c;这是一个本地 mock 地址&#xff0c;通常用于模拟后端接口。 2.VITE_ENABLE_ERUDA&#xff1a; 设置为 "true"&#xff0c;表示启用调试工具&#xff0c;通常是为了…

Android Framework AMS(01)AMS启动及相关初始化1-4

该系列文章总纲链接&#xff1a;专题总纲目录 Android Framework 总纲 本章关键点总结 & 说明&#xff1a; 说明&#xff1a;本章节主要涉及systemserver启动AMS及初始化AMS相关操作。同时由于该部分内容分析过多&#xff0c;因此拆成2个章节&#xff0c;本章节是第一章节&…

用户在网页上输入一个网址,它整个页面响应的流程是什么?

目录 一、流程的大致过程 二、流程的详细分析 1. 浏览器先分析超链接中的URL 2. DNS解析 3. 建立TCP连接 建立连接&#xff08;三次握手&#xff09; HTTP中的请求报文 4. 浏览器发送HTTP请求 5. 服务器处理请求并发送响应 HTTP的响应报文 6. 浏览器接收响应 7. 渲…

音视频入门基础:FLV专题(12)——FFmpeg源码中,解析DOUBLE类型的ScriptDataValue的实现

一、引言 从《音视频入门基础&#xff1a;FLV专题&#xff08;9&#xff09;——Script Tag简介》中可以知道&#xff0c;根据《video_file_format_spec_v10_1.pdf》第80到81页&#xff0c;SCRIPTDATAVALUE类型由一个8位&#xff08;1字节&#xff09;的Type和一个ScriptDataV…

OpenJudge | 置换选择排序

总时间限制: 1000ms 内存限制: 65536kB 描述 给定初始整数顺串&#xff0c;以及大小固定并且初始元素已知的二叉最小堆&#xff08;为完全二叉树或类似完全二叉树&#xff0c;且父元素键值总小于等于任何一个子结点的键值&#xff09;&#xff0c;要求利用堆实现置换选择排序&a…

idea2024设置中文

今天下载idea2024.2版本&#xff0c;发现已经装过中文插件&#xff0c;但是还是不显示中文&#xff0c;找了半天原来还需要设置中文选项 方案一 点击文件 -> 关闭项目 点击自定义 -> 选择语言 方案二 点击文件 -> 设置 外观与行为 -> 系统设置 -> 语言和地区…

[深度学习][python]yolov11+bytetrack+pyqt5实现目标追踪

【算法介绍】 YOLOv11、ByteTrack和PyQt5的组合为实现高效目标追踪提供了一个强大的解决方案。 YOLOv11是YOLO系列的最新版本&#xff0c;它在保持高检测速度的同时&#xff0c;通过改进网络结构、优化损失函数等方式&#xff0c;提高了检测精度&#xff0c;能够同时处理多个…

高空抛物AI检测算法:精准防控,技术革新守护城市安全

近年来&#xff0c;随着城市化进程的加速&#xff0c;高楼大厦如雨后春笋般涌现&#xff0c;但随之而来的高空抛物问题却成为城市管理的一大难题。高空抛物不仅严重威胁行人的安全&#xff0c;还可能引发法律纠纷和社会问题。为了有效预防和减少高空抛物事件的发生&#xff0c;…

微服务获取用户信息和OpenFeign传递用户

问题一&#xff1a; 网关已经完成登录校验并获取登录用户身份信息。但是当网关将请求转发到微服务时&#xff0c;微服务又该如何获取用户身份呢&#xff1f; 由于网关发送请求到微服务依然采用的是Http请求&#xff0c;因此我们可以将用户信息以请求头的方式传递到下游微服务…

毕业设计选题:基于ssm+vue+uniapp的医院管理系统小程序

开发语言&#xff1a;Java框架&#xff1a;ssmuniappJDK版本&#xff1a;JDK1.8服务器&#xff1a;tomcat7数据库&#xff1a;mysql 5.7&#xff08;一定要5.7版本&#xff09;数据库工具&#xff1a;Navicat11开发软件&#xff1a;eclipse/myeclipse/ideaMaven包&#xff1a;M…

SQL Inject-基于报错的信息获取

常用的用来报错的函数 updatexml() : 函数是MYSQL对XML文档数据进行查询和修改的XPATH函数。 extractvalue(): 函数也是MYSQL对XML文档数据进行查询的XPATH函数。 floor(): MYSQL中用来取整的函数。 思路&#xff1a; 在MySQL中使用一些指定的函数来制造报错&am…

如 有 任 何 问 题 ,请 及 时 联 系 我 们 反 馈 !

如有任何问题&#xff0c; 请及时联系我们反馈 !https://support.qq.com/products/671606 如有任何问题&#xff0c; 请及时联系我们反馈 !

中间件介绍

可以把中间件想象成是在应用和系统之间搭建的一座桥梁&#xff0c;或者说是一个“翻译官”和“中转站”。它处在操作系统、网络和数据库之上&#xff0c;应用软件的下层&#xff0c;负责实现应用软件之间的互联互通&#xff0c;使得应用软件能够更方便、高效地进行数据交换和通…

【深度学习】— softmax回归、网络架构、softmax 运算、小批量样本的向量化、交叉熵

【深度学习】— softmax回归、网络架构、softmax 运算、小批量样本的向量化、交叉熵 3.4 Softmax 回归3.4.1 分类问题3.4.2 网络架构 3.4.3 全连接层的参数开销3.4.4 softmax 运算3.4.5 小批量样本的向量化3.4.6 损失函数对数似然softmax 的导数 3.4.7 信息论基础熵信息量重新审…

网站开发基础:HTML、CSS

前端开发主要使用的技术如 HTML、CSS 和 JavaScript 等。 简单制作一个网页 <!DOCTYPE html> <html lang"en"> <head><meta charset"UTF-8"><title>柒毓同学网站的首页</title><style>.c1{border: solid 1px g…

C语言—单链表

目录 一、链表的概念及结构 二、单链表实现 &#xff08;2.1&#xff09;基本结构定义 &#xff08;2.2&#xff09;申请节点 &#xff08;2.3&#xff09;打印函数 &#xff08;2.4&#xff09;头部插入删除\尾部插入删除 &#xff08;2.4.1&#xff09;尾部插入 &…

计算机毕业设计 智慧物业服务系统的设计与实现 Java实战项目 附源码+文档+视频讲解

博主介绍&#xff1a;✌从事软件开发10年之余&#xff0c;专注于Java技术领域、Python人工智能及数据挖掘、小程序项目开发和Android项目开发等。CSDN、掘金、华为云、InfoQ、阿里云等平台优质作者✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精…