深度学习:GAN图像生成

GAN的诞生背景

诞生:

2014年由Ian Goodfellow提出

创新性:

无监督学习:GAN 提供了一种新的方法来进行无监督学习,即不需要对训练数据进行标注就可以学习到数据的潜在分布。
对抗训练:通过引入对抗机制,GAN 能够在没有明确目标函数的情况下训练生成器去逼近真实的数据分布。
灵活性与多样性:GAN 框架非常灵活,可以应用于图像、文本、音频等多种类型的数据,并且能够生成多样化的样本。

影响:

GAN 在多个领域有着广泛的应用,例如艺术创作、虚拟现实、医学影像合成、风格迁移等。商业上,GAN 也被用于增强产品推荐系统、提升用户体验等方面。

GAN的基本原理

生成对抗网络(GAN)的基本原理基于两个神经网络之间的博弈过程:一个生成器(Generator, G)和一个判别器(Discriminator, D)。生成器负责生成数据,判别器负责区分真实数据和生成数据。这两个网络通过相互竞争来提高性能。

损失函数

GAN的生成器和判别器各有一个损失函数。

  • 对于判别器来说,其目标是最小化分类误差,即最大化对真实数据标记为真的概率和对生成数据标记为假的概率。
  • 对于生成器来说,它的目标是最小化判别器将生成数据判断为假的概率,即希望生成的数据尽可能被误认为是真的。

网络架构

GAN的网络架构可以包括CNN和RNN

GAN的高级概念

条件生产对抗网络cGAN

cGAN允许在生成过程中加入条件变量,使得生成的数据具有特定的属性。可以生产特定风格的图像或者具有特定特征的人脸。

在标准的GAN中,生成器仅从随机噪声中生成数据样本。而在cGAN中,除了随机噪声外,生成器还接收一个条件向量作为输入。这个条件可以是类别标签、文本描述、另一张图像等。通过这种方式,cGAN能够根据给定的条件生成特定类型的数据。

循环生成对抗网络CycleGAN

CycleGAN能够在没有成对训练数据(输入-输出图像对)的情况下,实现不同域之间的图像转换。CycleGAN通过循环一致性损失来保持转换过程中的原始结构信息。

与cGAN相比,CycleGAN不依赖于明确的条件向量,而是通过两个相互对立的映射函数来实现双向的图像转换,并且通过循环一致性损失来确保转换的质量和可逆性。

核心理念

  • 两个生成器:一个将图像从域X转换到域Y(G: X → Y),另一个将图像从域Y转换回域X(F: Y → X)。
  • 两个判别器:分别判断来自各自领域的图像是真实的还是由对方生成器产生的。
  • 循环一致性损失:为了保证转换结果的一致性和质量,CycleGAN引入了一个循环一致性损失,要求经过两次转换后的图像尽可能接近原始图像,即F(G(X)) ≈ X 和 G(F(Y)) ≈ Y。
输入-输出图像对

输入-输出图像对指的是两个相关的图像,其中一个图像是另一个图像经过某种变换后的结果。这些图像对是成对出现的,每一对都包括一个源图像(输入)和一个目标图像(输出)。例如:

  • 风格迁移:输入可以是一张内容图像,而输出则是具有特定艺术风格的同一内容图像。
  • 图像修复:输入可能是一张有缺失或损坏部分的图像,输出则是修复后的完整图像。
  • 颜色化:输入是灰度图像,输出是相应的彩色图像。
  • 超分辨率:输入是低分辨率图像,输出是高分辨率版本。

损失函数

GAN网络通常采用BCELoss(二元交叉熵损失)。

二元交叉熵损失通常用于二分类问题,它度量的是实际分布与预测概率分布之间的距离。

BCELoss公式为:

其中 yi 是真实标签(0 或 1),y^i是模型对样本属于正类的预测概率,N是样本总数。

BCELoss对于离群点比较敏感,因为它会对远离目标值的预测施加更大的惩罚。此外,当预测接近于真实值时,其梯度会变得很小,这有助于训练过程中的稳定性。

为什么GAN网络使用BCELoss

  1. 二分类性质: GAN的核心是一个判别器(discriminator)和一个生成器(generator)。判别器的任务是区分真实的样本和由生成器产生的假样本。这是一个典型的二分类任务,BCELoss非常适合这种情况。

  2. 梯度特性: 在GAN训练过程中,尤其是初期阶段,生成器可能产生质量较差的样本。BCELoss在这种情况下能够提供更强的梯度信号给生成器,帮助它更快地改进。而MSELoss由于对所有错误平等对待,可能不会为生成器提供足够强的反馈来改善生成的质量。

  3. 理论依据: 根据原始的GAN论文,BCELoss直接对应了最小化JS散度(Jensen-Shannon divergence),这是一种用来度量两个概率分布间差异的方法。理论上,通过优化BCELoss,GAN可以实现两个分布的匹配。

GAN的挑战与解决方法

训练稳定性

GAN的训练过程容易出现不稳定,导致生成器和判别器之间的不平衡。

通过改进的优化算法和正则化技术,可以提高训练的稳定性。

模式崩溃

模式崩溃是指生成器开始生成非常相似或重复样本。这通常发生在判别器对某些特定模式的生成样本过于宽容时,使得生成器找到了一个能够欺骗判别器的“捷径”。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/440619.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

C语言文件操作(下)(28)

文章目录 前言一、文件的打开和关闭打开打开模式相对路径和绝对路径 关闭 二、文件操作正确流程三、文件顺序读写函数fopenfclosefputcfgetcfputsfgetsfprintffscanfsprintfsscanffwritefread 四、文件随机读写函数fseekftellrewind 五、文件读取结束时候的判断feofferror具体例…

Mysql锁机制解读(敲详细)

目录 锁的概念 全局锁 表级锁 表锁 元数据锁 意向锁 锁的概念 全局锁 表级锁 表锁 元数据锁 主要是对未提交事务,修改表结构造成表结构混乱,进行控制。 在不涉及表结构变化的情况下,元素锁可以忽略。 意向锁 避免有行级锁影响加表级锁&#xff0…

openpnp - 吸嘴校正失败的opencv参数分析

文章目录 openpnp - 吸嘴校正失败的opencv参数分析概述笔记阶段验证 - N2吸嘴校验完NT1NT2 阶段验证 - 底部相机高级校验完NT1NT2 参数比对保存 “阶段验证 - N2吸嘴校验完” 的NT1/NT2图像重建参数检测环境NT1ok的3个参数值NT1err的3个参数值NT2ok的3个参数值NT2err的3个参数值…

黑马JavaWeb开发跟学(九)MyBatis基础操作

黑马JavaWeb开发跟学九.MyBatis基础操作 1. Mybatis基础操作1.1 需求1.2 准备1.3 删除1.3.1 功能实现1.3.2 日志输入1.3.3 预编译SQL1.3.3.1 介绍1.3.3.2 SQL注入1.3.3.3 参数占位符 1.4 新增1.4.1 基本新增1.4.2 主键返回 1.5 更新1.6 查询1.6.1 根据ID查询1.6.2 数据封装1.6.…

C++引用(变量引用、数组引用与数组指针、引用本质-指针常量、常量引用)

C语言 ——对数组名进行解引用,取地址,还有sizeof和strlen进行操作解析_对数组名解引用得到什么-CSDN博客 C++引用(变量引用、数组引用与数组指针、引用本质-指针常量、常量引用)_c++11 数组引用-CSDN博客

复现文章:R语言复现文章画图

文章目录 介绍数据和代码图1图2图6附图2附图3附图4附图5附图6 介绍 文章提供画图代码和数据,本文记录 数据和代码 数据可从以下链接下载(画图所需要的所有数据): 百度云盘链接: https://pan.baidu.com/s/1peU1f8_TG2kUKXftkpYq…

软考系统分析师知识点四:操作系统基本原理

前言 今年报考了11月份的软考高级:系统分析师。 考试时间为:11月9日。 倒计时:33天。 目标:优先应试,其次学习,再次实践。 复习计划第一阶段:扫平基础知识点,仅抽取有用信息&am…

LabVIEW技术难度最大的程序

在LabVIEW开发中,技术难度最大的程序通常涉及复杂的系统架构、高精度的控制要求、大量数据处理,以及跨平台或多硬件设备的集成。以下是几类具有高技术难度的LabVIEW程序: 1. 高精度实时控制系统 LabVIEW中涉及高精度实时控制的系统程序&…

十四、深入理解Mysql索引底层数据结构与算法

文章目录 一、索引的本质1、索引是帮助MySQL高效获取数据的排好序的数据结构2、索引的数据结构3、数据结构可视化网站 二、常见数据结构介绍1、B-Tree2、BTree(B-Tree变种)3、Hash结构 三、存储引擎的索引实现1、MyISAM存储引擎索引实现MyISAM索引文件和…

Linux搭建Hadoop集群(详细步骤)

前言 Hadoop是一个由Apache基金会所开发的分布式系统基础架构。用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。 说白了就是实现一个任务可以在多个电脑上计算的过程。 一:准备工具 1.1 VMware 1.2L…

【中间件学习】Git的命令和企业级开发

一、Git命令 1.1 创建Git本地仓库 仓库是进行版本控制的一个文件目录。我们要想对文件进行版本控制,就必须创建出一个仓库出来。创建一个Git本地仓库对应的命令是 git init ,注意命令要在文件目录下执行。 hrxlavm-1lzqn7w2w6:~/gitcode$ pwd /home/hr…

力扣6~10题

题6(中等): 思路: 这个相较于前面只能是简单,个人认为,会print打印菱形都能搞这个,直接设置一个2阶数组就好了,只要注意位置变化就好了 python代码: def convert(self,…

复习HTML(进阶)

前言 上一篇的最后我介绍了在表单中&#xff0c;上传文件需要使用到 method属性 和enctype属性。本篇博客主要是详细的介绍这些知识 <form action"http://localhost:8080/test" method"post" enctype"multipart/form-data"> method属性…

clientWidth,offsetWidth,scrollHeight

clientWidth: offsetWidth&#xff1a; scrollHeight&#xff1a;

幂,你去哪儿了-《分析模式》漫谈37

DDD领域驱动设计批评文集 做强化自测题获得“软件方法建模师”称号 《软件方法》各章合集 “Analysis Patterns”的第3章的图3.5&#xff0c;原文的图是&#xff1a; 2004&#xff08;机械工业出版社&#xff09;中译本的图是&#xff1a; direct翻译成分子&#xff0c;inv…

Python 从入门到实战33(使用MySQL)

我们的目标是&#xff1a;通过这一套资料学习下来&#xff0c;通过熟练掌握python基础&#xff0c;然后结合经典实例、实践相结合&#xff0c;使我们完全掌握python&#xff0c;并做到独立完成项目开发的能力。 上篇文章我们讨论了数据库编程接口操作的相关知识。今天我们将学习…

M3u8视频由手机拷贝到电脑之后,通过potplayer播放报错找不到文件地址怎么解决?

该文章前面三节主要介绍M3u8视频是什么&#xff0c;视频播放错误(找不到地址)的解决方法在后面 M3U8是一种多媒体播放列表文件格式&#xff0c;主要用于流媒体播放。 一、文件格式特点 1. 文本文件&#xff1a;M3U8是一个采用 UTF-8 编码的文本文件&#xff0c;这意味着它可…

CSS基础-盒子模型(三)

9、CSS盒子模型 9.1 CSS常用长度单位 1、px&#xff1a;像素&#xff1b; 2、em&#xff1a;相对元素font-size的倍数&#xff1b; 3、rem&#xff1a;相对根字体的大小&#xff0c;html标签即是根&#xff1b; 4、%&#xff1a;相对于父元素进行计算。 注意&#xff1a;CSS样…

基于OpenCV的实时年龄与性别识别(支持CPU和GPU)

关于深度实战社区 我们是一个深度学习领域的独立工作室。团队成员有&#xff1a;中科大硕士、纽约大学硕士、浙江大学硕士、华东理工博士等&#xff0c;曾在腾讯、百度、德勤等担任算法工程师/产品经理。全网20多万粉丝&#xff0c;拥有2篇国家级人工智能发明专利。 社区特色…

C语言文件操作(上)(27)

文章目录 前言一、为什么要用文件&#xff1f;二、什么是文件&#xff1f;程序文件数据文件文件名文件类型文件缓冲区文件指针 三、流流的概念标准流 总结 前言 C语言可以直接操作文件&#xff0c;如果你是第一次听说这个特性&#xff0c;可能会眼前一亮&#xff0c;感到惊奇  …