提示工程、微调和 RAG

自众多大型语言模型(LLM)和高级对话模型发布以来,人们已经运用了各种技术来从这些 AI 系统中提取所需的输出。其中一些方法会改变模型的行为来更好地贴近我们的期望,而另一些方法则侧重于增强我们查询 LLM 的方式,以提取更精确和更有关联的信息。

检索增强生成(RAG)、提示和微调等技术是应用最广泛的。在这篇文章中,我们将研究对比这些技术的优缺点。这很重要,因为本文将帮助你了解何时该使用这些技术,以及如何有效地使用它们。

提示工程

提示是与任何大型语言模型交互的最基本方式。你可以把提示看作是给模型提供的指令。当你使用提示时,你会告诉模型你希望它给你反馈什么样的信息。这种方法也被称为提示工程,有点像是学习如何提出正确的问题以获得最佳答案的方法。但你能从中获得的东西是有限的,这是因为模型只能反馈它从训练中获知的内容。

提示工程的特点是它非常简单。你不需要成为技术专家也能写好提示,这对大多数人来说都是个好消息。但由于它的效果很大程度上取决于模型的原始学习水平,所以它可能并不总能提供你需要的最新或最具体的信息。当你处理的是一般性的主题,或当你只需要一个快速答案,而不需要太多细节时,提示工程最好用。

优点:

  • 易于使用:提示易于使用,不需要高级技术技能,因此可供广大受众使用。

  • 成本效益:由于它使用预先训练好的模型,因此与微调相比,其所涉及的计算成本极低。

  • 灵活性:用户可以快速调整提示以探索各种输出,而无需重新训练模型。

    缺点

  • 不一致:模型响应的质量和相关性可能因提示的措辞而有很大差异。

  • 有限的定制能力:定制模型响应的能力受限于用户制作有效提示的创造力和技巧。

  • 对模型知识的依赖:输出局限在模型在初始训练期间学到的内容上,这使得它对于高度专业化或最新的信息需求来说效果不佳。

    微     调

微调是指你找来一个语言模型并让它学习一些新的或特殊的东西。可以把它想象成更新手机上的应用程序以获得更好功能的方法。但在微调的情况下,应用程序(模型)需要大量新信息和时间来正确学习各种内容。对于模型来说,这有点像是重返校园。

由于微调需要大量的算力和时间,因此成本可能很高。但如果你需要语言模型很好地理解某些特定主题,那么微调就会很划算。这就像是教模型成为你所感兴趣的领域的专家一样。经过微调后,模型可以为你提供更准确、更接近你所需内容的答案。

优点:

  • 自定义:微调允许广泛的自定义,使模型能够生成针对特定领域或风格的响应。

  • 提高准确性:通过在专门的数据集上进行训练,模型可以产生更准确、更相关的响应。

  • 适应性:经过微调的模型可以更好地处理原始训练过程中未涵盖的小众主题或最新信息

    缺点:

  • 成本:微调需要大量计算资源,因此比提示工程更昂贵。

  • 技术技能:这种方法需要更深入地了解机器学习和语言模型架构。

  • 数据要求:有效的微调工作需要大量且精心策划的数据集,这类数据集可能很难编译。

    检索增强生成(RAG)

检索增强生成(RAG)将常见的语言模型与知识库之类的东西混合在一起。当模型需要回答问题时,它首先从知识库中查找并收集相关信息,然后根据该信息回答问题。模型会快速检查信息库,以确保它能给你最好的答案。

RAG 在你需要最新信息,或需要比模型最初学习到的内容更广泛的主题答案的情况下特别有用。在设置难度和成本方面它不算高也不算低。它很有用,因为它可以帮助语言模型给出新鲜且更详细的答案。但就像微调一样,它需要额外的工具和信息才能正常工作。

RAG 系统的成本、速度和响应质量严重依赖于矢量数据库,所以这种数据库成为了 RAG 系统中非常重要的一部分。

优点:

  • 动态信息:通过利用外部数据源,RAG 可以提供最新且高度相关的信息。

  • 平衡:在提示的简易性和微调的定制能力之间提供了中庸之道。

  • 上下文相关性:通过附加的上下文来增强模型的响应,从而产生更明智和更细致的输出。

    缺点:

  • 复杂性:RAG 实现起来可能很复杂,需要语言模型和检索系统之间做好集成。

  • 资源密集型:虽然 RAG 的资源密集程度低于完全微调的方法,但它仍然需要相当大的计算能力。

  • 数据依赖性:输出的质量在很大程度上取决于检索到的信息的相关性和准确性

    提示、微调和 RAG 对比

下面的表格完整对比了提示、微调和检索增强生成方法。此表将帮助你了解不同方法之间的差异,并决定哪种方法最适合你的需求。

上表分解了提示、微调和 RAG 三种方法的要点。它应该可以帮助你了解每种方法最适合哪种情况。希望这张表可以帮助你为下一个任务选择正确的工具。

RAG:增强 AI 应用程序的最佳选择

RAG 是一种独特的方法,它将传统语言模型的强大功能与外部知识库的精确度结合在了一起。这种方法有很多优势,因而脱颖而出。在特定情况下,相比单独使用提示或微调方法,RAG 的优势特别突出。

首先,RAG 通过实时检索外部数据来确保其所提供的信息是最新并且高度相关的。这对于需要最新信息的应用程序来说非常重要,与新闻相关的查询或快速发展的领域就是典型例子。

其次,RAG 在可定制性和资源需求方面提供了一种平衡的方法。与需要大量计算能力的完全微调方法不同,RAG 允许更灵活、更节省资源的操作,让更多用户和开发人员可以轻松使用它。

最后,RAG 的混合特性弥补了 LLM 的广泛生成能力与知识库中可用的特定详细信息之间的差距。在它的帮助下,模型不仅会产生相关且详细的输出,而且还具有丰富的上下文。

优化、可扩展且经济高效的矢量数据库解决方案可以极大地增强 RAG 应用程序的性能和功能。这就是为什么你需要 MyScale,这是一个基于 SQL 的矢量数据库,它可以与主要的 AI 框架和语言模型平台(如 OpenAI、Langchain、Langchain JS/TS 和 LlamaIndex)顺利集成。使用 MyScale 后,RAG 可以变得更快、更准确,这对于寻求最佳结果的用户来说非常有用。

小     结

总之,你应该选择提示工程、微调还是检索增强生成方法将取决于你项目的具体要求、可用资源和期望的结果。每种方法都有其独特的优势和局限性。提示是易用且经济高效的,但提供的定制能力较少。微调以更高的成本和复杂性提供充分的可定制性。RAG 实现了某种平衡,提供最新且与特定领域相关的信息,复杂度适中。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/443161.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

1. Keepalived概念和作用

1.keepalived概念 (1)解决单点故障(组件免费) (2)可以实现高可用HA机制 (3)基于VRR协议(虚拟路由沉余协议) 2.keepalived双机主备原理

一入递归深似海,算法之美无止境

最近在刷leetcode hot100,在写二叉树中最大路径和的时候,看到了一个佬对递归的理解,深受启发,感觉自己对于递归的题又行了!!! 这里给大家分享一下(建立大家先去尝试一下这道题再来看 124. 二叉树中的最大路径和 二叉树中的 路径 被定义为一条节点序列,序列中每…

什么是PLM系统?PLM系统对制造业起到哪些作用?三品PLM系统对汽车制造业意义

在当今竞争激烈的制造业环境中,企业面临着来自市场、技术、客户需求等多方面的挑战。为了应对这些挑战,许多制造企业纷纷引入产品生命周期管理PLM系统,以实现更高效、更灵活的产品全生命周期管理。PLM系统以其独特的优势,在优化产…

智能猫砂盆怎么选购?cewey、鸟语花香、霍曼全方位测评性能大PK

智能猫砂盆怎么选购?cewey、鸟语花香、霍曼全方位测评性能大PK 现在的生活节奏越来越快,我们经常会外出不在家,这时候猫咪的粑粑就不能及时清理,会出现猫咪嫌猫砂盆脏乱拉,家里空气也会充满臭味。针对这个问题&#x…

Unity3d动画插件DoTween使用指南

1、DoTween是什么? DoTween是一款对象动画类插件,它是一款针对Unity 3D编辑器的、快速高效的、安全的、面向对象的补间动画引擎,并且对C#语言开发做出了很多的优化。另外,它使得开发者无需通过Unity内置的Animator或Coroutines即可…

【Chrome浏览器插件--资源嗅探猫抓】

提示:文章写完后,目录可以自动生成,如何生成可参考右边的帮助文档 文章目录 一、资源嗅探插件---猫抓二、使用步骤总结 一、资源嗅探插件—猫抓 猫抓是一个浏览器插件,可以检测当前网页中的一些资源文件,可设置嗅探的…

用KLineChart绘制股票行情K线图

用KLineChart绘制股票行情K线图 先看效果集成过程集成到系统 先看效果 用klinechart开源代码集成到系统中,展示的K线图效果。 集成过程 KlineChart源码地址: https://github.com/klinecharts/KLineChart KlineChart提供了多种行情分析指标 集成到…

OJ在线评测系统 微服务高级 Gateway网关接口路由和聚合文档 引入knife4j库集中查看管理并且调试网关项目

Gateway微服务网关接口路由 各个服务之间已经能相互调用了 为什么需要网关 因为我们的不同服务是放在不同的端口上面的 如果前端调用服务 需要不同的端口 8101 8102 8103 8104 我们最好提供一个唯一的 给前端去调用的路径 我们学习技术的时候必须要去思考 1.为什么要用&am…

Python | Leetcode Python题解之第458题可怜的小猪

题目: 题解: class Solution:def poorPigs(self, buckets: int, minutesToDie: int, minutesToTest: int) -> int:if buckets 1:return 0combinations [[0] * (buckets 1) for _ in range(buckets 1)]combinations[0][0] 1iterations minutesT…

JavaSE——集合1:Collection接口(Iterator和增强for遍历集合)

目录 一、集合框架体系(重要) 二、集合引入 (一)集合的理解与好处 三、Collection接口 (一)Collection接口实现类的特点 (二)Collection接口常用方法 (三)Collection接口遍历元素的方式(Iterator和增强for) 1.使用Iterator(迭代器) 1.1Iterator(迭代器)介绍 1.2Itera…

[含文档+PPT+源码等]精品基于Nodejs实现的家教服务小程序的设计与实现

基于Node.js实现的家教服务小程序的设计与实现背景,主要源于以下几个方面: 一、家教市场的现状与需求 随着教育竞争的日益激烈,家庭对子女教育质量的重视程度不断提升,家教服务已成为许多家庭不可或缺的一部分。然而&#xff0c…

graphql--快速了解graphql特点

graphql--快速了解graphql特点 1.它的作用2.demo示例2.1依赖引入2.2定义schema2.3定义GrapQL端点2.4运行测试2.5一些坑 今天浏览博客时看到graphQL,之前在招聘网站上第一次接触,以为是图数据查询语言, 简单了解后,发现对graphQL的介绍主要是用作API的查询语言,不仅限于图数据查…

Meta 发布 Quest 3S 头显及 AR 眼镜原型:开启未来交互新视界

简介 在科技的浪潮中,Meta 始终站在创新的前沿,不断为我们带来令人惊叹的虚拟现实和增强现实体验。2024 年 10 月 6 日,让我们一同聚焦 Meta 最新发布的 Quest 3S 头显及 AR 眼镜原型(Orion),探索这两款产品…

自由学习记录(2)

Unity打包图集相关 Draw Call 实验设置: 我们将创建两个场景,一个场景有高 Draw Call,另一个场景通过优化减少 Draw Call。然后对比它们的帧率(FPS)。 场景 1:高 Draw Call 场景(无优化&…

【数据结构与算法-高阶】并查集

【数据结构与算法-高阶】并查集 🥕个人主页:开敲🍉 🔥所属专栏:数据结构与算法🍅 🌼文章目录🌼 1. 并查集原理 2. 并查集实现 3. 并查集应用 1. 并查集原理 在一些应用问题中&…

了解HTTPS

目录 1.HTTP认识 2.HTTP请求 3.HTTP响应 4.URL 5.HTTP方法 面试题:POST 和 GET区别? 网上关于 GET 与 POST的差别 有待商议 关于请求报头 和 响应报头 6..Host : 7..USer-Agent(简称UA) 8.状态码 9.HTTPS 是…

读懂MySQL事务隔离

什么是事务 事务就是一组原子性的SQL查询,或者说一个独立的工作单元。事务内的语句,要么全部执行成功,要么全部执行失败。 关于事务银行系统的应用是解释事务必要性的一个经典例子。 假设一个银行的数据库有两张表:支票表&#x…

【Windows】开始菜单关键错误以及系统应用闪退问题记录

一 开始菜单关键错误 Windows长时间没有重启,重启之后开始菜单点不进去,报错“关键错误”。 查询网上有两种解决方案: 【1】更新系统版本; 【2】通过powershell执行一次性恢复所有应用的指令; 我这边采用第二种方法&am…

如何使用pymysql和psycopg2执行SQL语句

在Python中,pymysql和psycopg2是两个非常流行的库,用于与MySQL和PostgreSQL数据库进行交互。本文将详细介绍如何使用这两个库来执行SQL查询、插入、更新和删除操作。 1. 准备工作 首先,确保已经安装了pymysql和psycopg2库。如果尚未安装&a…

指针函数C++

指针函数概念 指针函数在C中是一种特殊类型的函数。从本质上讲,它是一个函数,不过其返回值是一个指针类型的数据。例如,像int* plusfunction(int a, int b);这样的函数声明,plusfunction就是一个指针函数,它接受两个i…