Ultralytics:YOLO11使用教程
- 前言
- 相关介绍
- 前提条件
- 实验环境
- 安装环境
- 项目地址
- Linux
- Windows
- YOLO11使用教程
- 进行目标检测
- 进行实例分割
- 进行姿势估计
- 进行旋转框检测
- 进行图像分类
- 参考文献
前言
- 由于本人水平有限,难免出现错漏,敬请批评改正。
- 更多精彩内容,可点击进入Python日常小操作专栏、OpenCV-Python小应用专栏、YOLO系列专栏、自然语言处理专栏或我的个人主页查看
- 基于DETR的人脸伪装检测
- YOLOv7训练自己的数据集(口罩检测)
- YOLOv8训练自己的数据集(足球检测)
- YOLOv10训练自己的数据集(交通标志检测)
- YOLO11训练自己的数据集(吸烟、跌倒行为检测)
- YOLOv5:TensorRT加速YOLOv5模型推理
- YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
- 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
- YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
- YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
- Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
- YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
- 使用Kaggle GPU资源免费体验Stable Diffusion开源项目
相关介绍
YOLO11是Ultralytics YOLO系列实时目标探测器的最新版本,重新定义了具有尖端精度,速度和效率的可能性。在以前的YOLO版本令人印象深刻的进步的基础上,YOLO11引入了架构和训练方法的重大改进,使其成为广泛的计算机视觉任务的通用选择。
[1] YOLO11 源代码地址:https://github.com/ultralytics/ultralytics.git
[2] YOLO11 官方文档:https://docs.ultralytics.com/models/yolo11/
关键特性
- 增强的特征提取:YOLO11采用了改进的骨干和颈部架构,增强了特征提取能力,以实现更精确的目标检测和复杂的任务性能。
- 优化效率和速度:YOLO11引入了精炼的架构设计和优化的培训管道,提供更快的处理速度,并保持精度和性能之间的最佳平衡。
- 更少参数的更高精度:随着模型设计的进步,YOLO11m在使用COCO数据集时实现了更高的平均平均精度(mAP)。
支持的任务和模式
YOLO11建立在YOLOv8中引入的多功能模型范围之上,为各种计算机视觉任务提供增强的支持:
该表提供了YOLO11模型变体的概述,展示了它们在特定任务中的适用性以及与Inference、Validation、Training和Export等操作模式的兼容性。这种灵活性使YOLO11适用于计算机视觉的广泛应用,从实时检测到复杂的分割任务。表现度量标准:用于衡量某个系统、组织或个人表现的多个标准或指标。
前提条件
- 熟悉Python
实验环境
torch==2.0.1
torchvision==0.15.2
onnx==1.14.0
onnxruntime==1.15.1
pycocotools==2.0.7
PyYAML==6.0.1
scipy==1.13.0
onnxsim==0.4.36
onnxruntime-gpu==1.18.0
gradio==4.31.5
opencv-python==4.9.0.80
psutil==5.9.8
py-cpuinfo==9.0.0
huggingface-hub==0.23.2
safetensors==0.4.3
安装环境
pip install ultralytics
# 或者
pip install ultralytics -i https://pypi.tuna.tsinghua.edu.cn/simple # 国内清华源,下载速度更快
项目地址
- YOLO11 源代码地址:https://github.com/ultralytics/ultralytics.git
Linux
git clone https://github.com/ultralytics/ultralytics.gitcd ultralytics
# conda create -n yolo11 python=3.9
# conda activate yolo11
pip install -r requirements.txt
pip install -e .
Cloning into 'ultralytics'...
remote: Enumerating objects: 4583, done.
remote: Counting objects: 100% (4583/4583), done.
remote: Compressing objects: 100% (1270/1270), done.
remote: Total 4583 (delta 2981), reused 4576 (delta 2979), pack-reused 0
Receiving objects: 100% (4583/4583), 23.95 MiB | 1.55 MiB/s, done.
Resolving deltas: 100% (2981/2981), done.
Windows
请到
https://github.com/ultralytics/ultralytics.git
网站下载源代码zip压缩包。
cd yolov10
# conda create -n yolo11 python=3.9
# conda activate yolo11
pip install -r requirements.txt
pip install -e .
YOLO11使用教程
进行目标检测
yolo predict model=yolo11n.pt source=test_imgs/
进行实例分割
yolo predict model=yolo11n-seg.pt source=test_imgs/
进行姿势估计
yolo predict model=yolo11n-pose.pt source=test_imgs/
进行旋转框检测
yolo predict model=yolo11n-obb.pt source=test_imgs/
进行图像分类
yolo predict model=yolo11n-cls.pt source=test_imgs/
参考文献
[1] YOLO11 源代码地址:https://github.com/ultralytics/ultralytics.git
[2] YOLO11 官方文档:https://docs.ultralytics.com/models/yolo11/
- 由于本人水平有限,难免出现错漏,敬请批评改正。
- 更多精彩内容,可点击进入Python日常小操作专栏、OpenCV-Python小应用专栏、YOLO系列专栏、自然语言处理专栏或我的个人主页查看
- 基于DETR的人脸伪装检测
- YOLOv7训练自己的数据集(口罩检测)
- YOLOv8训练自己的数据集(足球检测)
- YOLOv10训练自己的数据集(交通标志检测)
- YOLO11训练自己的数据集(吸烟、跌倒行为检测)
- YOLOv5:TensorRT加速YOLOv5模型推理
- YOLOv5:IoU、GIoU、DIoU、CIoU、EIoU
- 玩转Jetson Nano(五):TensorRT加速YOLOv5目标检测
- YOLOv5:添加SE、CBAM、CoordAtt、ECA注意力机制
- YOLOv5:yolov5s.yaml配置文件解读、增加小目标检测层
- Python将COCO格式实例分割数据集转换为YOLO格式实例分割数据集
- YOLOv5:使用7.0版本训练自己的实例分割模型(车辆、行人、路标、车道线等实例分割)
- 使用Kaggle GPU资源免费体验Stable Diffusion开源项目