【超详细】基于YOLOv11的PCB缺陷检测

主要内容如下:

1、数据集介绍
2、下载PCB数据集
3、不同格式数据集预处理(Json/xml),制作YOLO格式训练集
4、模型训练及可视化
5、Onnxruntime推理

运行环境:Python=3.8(要求>=3.8),torch1.12.0+cu113(要求>=1.8),onnxruntime-gpu=1.12.0
YOLO格式下载链接【可直接跳过步骤123】:https://aistudio.baidu.com/datasetdetail/297149

往期内容:

【超详细】跑通YOLOv8之深度学习环境配置1-Anaconda安装
【超详细】跑通YOLOv8之深度学习环境配置2-CUDA安装
【超详细】跑通YOLOv8之深度学习环境配置3-YOLOv8安装
【超详细】基于YOLOv8的PCB缺陷检测

0 YOLOv11

代码地址:https://github.com/ultralytics/ultralytics/tree/main/ultralytics/cfg/models/11
在这里插入图片描述

1 数据集介绍

1.1 简介

印刷电路板(PCB)瑕疵数据集:是一个公共的合成PCB数据集,由北京大学发布,其中包含1386张图像以及6种缺陷(缺失孔,鼠标咬伤,开路,短路,杂散,伪铜),用于检测,分类和配准任务。本文我们选取了其中适用与检测任务的693张图像,随机选择593张图像作为训练集,100张图像作为验证集。

1.2 示例

在这里插入图片描述

2 下载数据集

官方链接:https://robotics.pkusz.edu.cn/resources/dataset/
注意:百度网盘下载,速度很慢,不推荐!推荐去百度AI stduio数据集下载,速度快!
在这里插入图片描述
百度AI stduio下载链接:https://aistudio.baidu.com/datasetdetail/272346
在这里插入图片描述

3 制作YOLO格式训练集

具体见第3节3.2:【超详细】基于YOLOv8的PCB缺陷检测
YOLO格式下载链接【直接拿来训练Aistudio快速下载链接】:https://aistudio.baidu.com/datasetdetail/297149
在这里插入图片描述
在这里插入图片描述

4 模型训练及可视化

4.1 更新ultralytics

pip install --upgrade ultralytics

4.2 创建数据集yaml文件

注意:路径一定填对,类别与id一定要对应!!!
创建ultralytics\cfg\datasets\PCB.yaml文件,内容如下:

path: E:\\datasets\\PCB\\PCB_DATASET_YOLO # dataset root dir
train: images/train2017 # train images (relative to 'path') 4 images
val: images/val2017 # val images (relative to 'path') 4 images# Classes for DOTA 1.0
names:0: missing_hole1: mouse_bite2: open_circuit3: short4: spur5: spurious_copper

4.3 创建一个训练脚本

在主目录下创建一个train.py,内容如下:

from ultralytics import YOLOif __name__ == '__main__':# Load a model# model = YOLO("yolo11s.yaml")  # build a new model from scratchmodel = YOLO("yolo11s.pt")  # load a pretrained model (recommended for training)# Use the modelmodel.train(data="PCB.yaml", imgsz=640, batch=16, workers=8, cache=True, epochs=100)  # train the modelmetrics = model.val()  # evaluate model performance on the validation set# results = model("ultralytics\\assets\\bus.jpg")  # predict on an imagepath = model.export(format="onnx", opset=13)  # export the model to ONNX format

问题1:若爆显存,降低batch和workers大小!

训练结果如下【比yolov8s略高】
在这里插入图片描述
在这里插入图片描述

4.4 创建一个预测脚本

在主目录下创建一个detect.py,内容如下:

from ultralytics import YOLOif __name__ == '__main__':# Load a modelmodel = YOLO(r"runs\detect\train\weights\best.pt")  # load modelmodel.predict(source=r"E:\datasets\PCB\PCB_DATASET_YOLO\images\val2017\01_missing_hole_07.jpg", save=True, save_conf=True, save_txt=True, name='output')

预测结果
在这里插入图片描述

5 Onnxruntime推理及可视化

5.1 onnx推理

在主目录下创建一个onnx_infer.py,内容如下:

import argparse
import time 
import cv2
import numpy as npimport onnxruntime as ort  # 使用onnxruntime推理用上,pip install onnxruntime-gpu==1.12.0 -i  https://pypi.tuna.tsinghua.edu.cn/simple,默认安装CPU
import os 
os.environ['CUDA_VISIBLE_DEVICES'] = '0'class YOLOv11:"""YOLOv11 object detection model class for handling inference and visualization."""def __init__(self, onnx_model, imgsz=(640, 640)):"""Initialization.Args:onnx_model (str): Path to the ONNX model."""# 构建onnxruntime推理引擎self.ort_session = ort.InferenceSession(onnx_model,providers=['CUDAExecutionProvider', 'CPUExecutionProvider']if ort.get_device() == 'GPU' else ['CPUExecutionProvider'])print(ort.get_device())# Numpy dtype: support both FP32 and FP16 onnx modelself.ndtype = np.half if self.ort_session.get_inputs()[0].type == 'tensor(float16)' else np.singleself.model_height, self.model_width = imgsz[0], imgsz[1]  # 图像resize大小def __call__(self, im0, conf_threshold=0.4, iou_threshold=0.45):"""The whole pipeline: pre-process -> inference -> post-process.Args:im0 (Numpy.ndarray): original input image.conf_threshold (float): confidence threshold for filtering predictions.iou_threshold (float): iou threshold for NMS.Returns:boxes (List): list of bounding boxes."""# 前处理Pre-processt1 = time.time()im, ratio, (pad_w, pad_h) = self.preprocess(im0)pre_time = round(time.time() - t1, 3)# print('det预处理时间:{:.3f}s'.format(time.time() - t1))# 推理 inferencet2 = time.time()preds = self.ort_session.run(None, {self.ort_session.get_inputs()[0].name: im})[0]# print('det推理时间:{:.2f}s'.format(time.time() - t2))det_time = round(time.time() - t2, 3)# 后处理Post-processt3 = time.time()boxes = self.postprocess(preds,im0=im0,ratio=ratio,pad_w=pad_w,pad_h=pad_h,conf_threshold=conf_threshold,iou_threshold=iou_threshold,)# print('det后处理时间:{:.3f}s'.format(time.time() - t3))post_time = round(time.time() - t3, 3)return boxes, (pre_time, det_time, post_time)# 前处理,包括:resize, pad, HWC to CHW,BGR to RGB,归一化,增加维度CHW -> BCHWdef preprocess(self, img):"""Pre-processes the input image.Args:img (Numpy.ndarray): image about to be processed.Returns:img_process (Numpy.ndarray): image preprocessed for inference.ratio (tuple): width, height ratios in letterbox.pad_w (float): width padding in letterbox.pad_h (float): height padding in letterbox."""# Resize and pad input image using letterbox() (Borrowed from Ultralytics)shape = img.shape[:2]  # original image shapenew_shape = (self.model_height, self.model_width)r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])ratio = r, rnew_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))pad_w, pad_h = (new_shape[1] - new_unpad[0]) / 2, (new_shape[0] - new_unpad[1]) / 2  # wh paddingif shape[::-1] != new_unpad:  # resizeimg = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)top, bottom = int(round(pad_h - 0.1)), int(round(pad_h + 0.1))left, right = int(round(pad_w - 0.1)), int(round(pad_w + 0.1))img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))  # 填充# Transforms: HWC to CHW -> BGR to RGB -> div(255) -> contiguous -> add axis(optional)img = np.ascontiguousarray(np.einsum('HWC->CHW', img)[::-1], dtype=self.ndtype) / 255.0img_process = img[None] if len(img.shape) == 3 else imgreturn img_process, ratio, (pad_w, pad_h)# 后处理,包括:阈值过滤与NMSdef postprocess(self, preds, im0, ratio, pad_w, pad_h, conf_threshold, iou_threshold):"""Post-process the prediction.Args:preds (Numpy.ndarray): predictions come from ort.session.run().im0 (Numpy.ndarray): [h, w, c] original input image.ratio (tuple): width, height ratios in letterbox.pad_w (float): width padding in letterbox.pad_h (float): height padding in letterbox.conf_threshold (float): conf threshold.iou_threshold (float): iou threshold.Returns:boxes (List): list of bounding boxes."""x = preds  # outputs: predictions (1, 84, 8400)# Transpose the first output: (Batch_size, xywh_conf_cls, Num_anchors) -> (Batch_size, Num_anchors, xywh_conf_cls)x = np.einsum('bcn->bnc', x)  # (1, 8400, 84)# Predictions filtering by conf-thresholdx = x[np.amax(x[..., 4:], axis=-1) > conf_threshold]# Create a new matrix which merge these(box, score, cls) into one# For more details about `numpy.c_()`: https://numpy.org/doc/1.26/reference/generated/numpy.c_.htmlx = np.c_[x[..., :4], np.amax(x[..., 4:], axis=-1), np.argmax(x[..., 4:], axis=-1)]# NMS filtering# 经过NMS后的值, np.array([[x, y, w, h, conf, cls], ...]), shape=(-1, 4 + 1 + 1)x = x[cv2.dnn.NMSBoxes(x[:, :4], x[:, 4], conf_threshold, iou_threshold)]# 重新缩放边界框,为画图做准备if len(x) > 0:# Bounding boxes format change: cxcywh -> xyxyx[..., [0, 1]] -= x[..., [2, 3]] / 2x[..., [2, 3]] += x[..., [0, 1]]# Rescales bounding boxes from model shape(model_height, model_width) to the shape of original imagex[..., :4] -= [pad_w, pad_h, pad_w, pad_h]x[..., :4] /= min(ratio)# Bounding boxes boundary clampx[..., [0, 2]] = x[:, [0, 2]].clip(0, im0.shape[1])x[..., [1, 3]] = x[:, [1, 3]].clip(0, im0.shape[0])return x[..., :6]  # boxeselse:return []if __name__ == '__main__':# Create an argument parser to handle command-line argumentsparser = argparse.ArgumentParser()parser.add_argument('--det_model', type=str, default=r"E:\Code\yolov11\ultralytics-main\runs\detect\train\weights\best.onnx", help='Path to ONNX model')parser.add_argument('--source', type=str, default=str(r'E:\datasets\PCB\PCB_DATASET_YOLO\images\val2017'), help='Path to input image')parser.add_argument('--out_path', type=str, default=str(r'E:\Code\yolov11\ultralytics-main\runs\detect\res'), help='结果保存文件夹')parser.add_argument('--imgsz_det', type=tuple, default=(640, 640), help='Image input size')parser.add_argument('--classes', type=list, default=['missing_hole', 'mouse_bite', 'open_circuit', 'short', 'spur', 'spurious_copper'], help='类别')parser.add_argument('--conf', type=float, default=0.25, help='Confidence threshold')parser.add_argument('--iou', type=float, default=0.6, help='NMS IoU threshold')args = parser.parse_args()if not os.path.exists(args.out_path):os.mkdir(args.out_path)print('开始运行:')# Build modeldet_model = YOLOv11(args.det_model, args.imgsz_det)color_palette = np.random.uniform(0, 255, size=(len(args.classes), 3))  # 为每个类别生成调色板for i, img_name in enumerate(os.listdir(args.source)):try:start_time = time.time()# Read image by OpenCVimg = cv2.imread(os.path.join(args.source, img_name))# 检测Inferenceboxes, (pre_time, det_time, post_time) = det_model(img, conf_threshold=args.conf, iou_threshold=args.iou)print('{}/{} ==>总耗时间: {:.3f}s, 其中, 预处理: {:.3f}s, 推理: {:.3f}s, 后处理: {:.3f}s, 识别{}个目标'.format(i+1, len(os.listdir(args.source)), time.time() - start_time, pre_time, det_time, post_time, len(boxes)))for (*box, conf, cls_) in boxes:cv2.rectangle(img, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])),color_palette[int(cls_)], 2, cv2.LINE_AA)cv2.putText(img, f'{args.classes[int(cls_)]}: {conf:.3f}', (int(box[0]), int(box[1] - 9)),cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, cv2.LINE_AA)cv2.imwrite(os.path.join(args.out_path, img_name), img)except Exception as e:print(e)   

资源消耗:显存不到1.5G,推理速度5ms.

5.2 结果可视化

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/446007.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

matlab不小心删除怎么撤回

预设项——>删除文件——>移动至临时文件夹 tem临时文件夹下

【RabbitMQ】初识 RabbitMQ

🥰🥰🥰来都来了,不妨点个关注叭! 👉博客主页:欢迎各位大佬!👈 文章目录 1. MQ 是什么?1.1 MQ 本质1.2 系统间通信 2. MQ的作用是什么?2.1 异步解耦2.2 流量削…

【ProtoBuf】ProtoBuf基础与安装

本篇文章介绍 C 使用方向 文章目录 ProtoBuf简介ProtoBuf安装WindowsLinux ProtoBuf简介 ProtoBuf(全称为 Protocol Buffer)是一种序列化结构数据的方法 序列化是将对象转换为可存储的或传输的格式的过程,通常用于数据交换或持久化存储。我们在C/Java中编写的类不…

2.13寸电子墨水屏HINK-E0213+esp8266

记录好数字 2.13寸电子墨水屏HINK-E0213esp8266 声明:大部分资料来源于微雪电子http://微雪电子-官网 https://www.waveshare.net/ 前言 很久以前买的一块电子墨水屏,运气很好,这个型号HINK-E0213资料很全,而且微雪官网也有相关电路资料http://2.13inch e-Paper HAT - Waves…

【GaussDB】产品简介

产品定位 GaussDB 200是一款具备分析及混合负载能力的分布式数据库,支持x86和Kunpeng硬件架构,支持行存储与列存储,提供PB(Petabyte)级数据分析能力、多模分析能力和实时处理能力,用于数据仓库、数据集市、实时分析、实时决策和混…

【UI】将 naive ui 的 message 封装进axios 中,关于naiveui的message相关的用法

文章目录 前言在setup外进行使用直接包裹使用vue 单文件中使用 参考文章: 关于naiveui的message相关的用法 前言 最近新建了一个vite vu3 的项目,完全是从0 到1 ,封装到request 的时候 想对axios 请求做一个全局的处理,但发现…

【尚硅谷】FreeRTOS学笔记(更新中更新时间2024.10.12)

在网上看到的一段很形象的描述,放在这里给大家娱乐一下。 裸机开发:n个人拉屎,先进去一个拉完,下一个再来。看门狗:如果有人拉完屎还占着,茅坑刷视频,把他拖出去中断系统:n个人拉屎&…

两三年没涨薪了

前几天到上海见合伙人,有好几位合伙人也都是中型或者是大厂的骨干,基本上是在P8这个级别,大家谈到了几个共同点。 几个典型的现象说一下,既是新闻,也是旧故事。天下的事都雷同。第一个,老板换了&#xff0c…

LVS-DR+Keepalived 高可用群集部署

LVS-DRKeepalived 高可用群集部署 Keepalived 的工作原理LVSKeepalived 高可用群集部署配置负载调度器(主、备相同)关闭防火墙和核心防护及准备IPVS模块配置keeplived(主、备DR 服务器上都要设置)启动 ipvsadm 服务调整 proc 响应…

机器学习中的模型设计与训练流程详解

目录 前言1. 模型设计1.1 数据特性分析1.2 计算资源限制1.3 应用场景需求 2. 模型训练2.1 训练集与验证集的划分2.2 损失函数的选择2.3 模型参数更新 3. 优化方法3.1 梯度下降法3.2 正则化方法 4. 模型测试4.1 性能评估指标4.2 模型的泛化能力 5. 模型选择5.1 数据规模与模型复…

集合框架06:Vector集合使用

1.视频链接:13.13 Vector使用_哔哩哔哩_bilibilihttps://www.bilibili.com/video/BV1zD4y1Q7Fw/?p13&spm_id_from333.1007.top_right_bar_window_history.content.click&vd_sourceb5775c3a4ea16a5306db9c7c1c1486b52.代码示例: package com.yu…

Fetch 与 Axios:JavaScript HTTP 请求库的详细比较

💝💝💝欢迎莅临我的博客,很高兴能够在这里和您见面!希望您在这里可以感受到一份轻松愉快的氛围,不仅可以获得有趣的内容和知识,也可以畅所欲言、分享您的想法和见解。 推荐:「storm…

初知C++:AVL树

文章目录 初知C:AVL树1.AVL树的概念2.AVL树的是实现2.1.AVL树的结构2.2.AVL树的插入2.3.旋转2.4.AVL树的查找2.5.AVL树平衡检测 初知C:AVL树 1.AVL树的概念 • AVL树是最先发明的自平衡⼆叉查找树,AVL是⼀颗空树,或者具备下列性…

python如何对变量赋值

Python 中的变量赋值不需要类型声明。 每个变量在内存中创建,都包括变量的标识,名称和数据这些信息。 每个变量在使用前都必须赋值,变量赋值以后该变量才会被创建。 等号()用来给变量赋值。 等号(&…

SpringBoot 整合 阿里云 OSS图片上传

一、OOS 简介 ‌阿里云OSS(Object Storage Service)是一种基于云存储的产品,适用于存储和管理各种类型的文件,包括图片、视频、文档等。‌ 阿里云OSS具有高可靠性、高可用性和低成本等优点,因此被广泛应用于各种场景&…

2013年国赛高教杯数学建模A题车道被占用对城市道路通行能力的影响解题全过程文档及程序

2013年国赛高教杯数学建模 A题 车道被占用对城市道路通行能力的影响 车道被占用是指因交通事故、路边停车、占道施工等因素,导致车道或道路横断面通行能力在单位时间内降低的现象。由于城市道路具有交通流密度大、连续性强等特点,一条车道被占用&#x…

el-image预览时和el-table边框出现样式穿透问题处理

el-image预览时和el-table边框出现样式穿透问题处理 如图所示 我们只需要在当前组件加一个css即可解决问题 <style lang"scss" scoped> :deep(.el-table__cell) {position: static !important; } </style>

【Golang】关于Go语言中的定时器原理与实战应用

✨✨ 欢迎大家来到景天科技苑✨✨ &#x1f388;&#x1f388; 养成好习惯&#xff0c;先赞后看哦~&#x1f388;&#x1f388; &#x1f3c6; 作者简介&#xff1a;景天科技苑 &#x1f3c6;《头衔》&#xff1a;大厂架构师&#xff0c;华为云开发者社区专家博主&#xff0c;…

结构体 超详解

目录 1. 结构体的声明与创建 1.1 结构体类型的定义声明&#xff08;类型&#xff09; 1.2 结构体变量的创建和初始化&#xff08;变量&#xff09; 1.3 结构体变量的特殊声明&#xff08;类型和变量&#xff09; 1.3.1 定义时创建变量 1.3.2 结构体的不完全声明&#xff…

解决重写QSilder::sliderPress后点击位置与滑块显示位置不一样的问题

如下代码所示&#xff0c;我是用的是事件过滤器&#xff0c;也可以重写QSlider。 bool KuGouApp::eventFilter(QObject *watched, QEvent *event) {if(watched ui->progressSlider) {if (event->type()QEvent::MouseButtonPress) //判断类型{auto mouseEvent…