【详细教程】如何使用YOLOv11进行图像与视频的目标检测

《博主简介》

小伙伴们好,我是阿旭。专注于人工智能、AIGC、python、计算机视觉相关分享研究。
更多学习资源,可关注公-仲-hao:【阿旭算法与机器学习】,共同学习交流~
👍感谢小伙伴们点赞、关注!

《------往期经典推荐------》

一、AI应用软件开发实战专栏【链接】

项目名称项目名称
1.【人脸识别与管理系统开发】2.【车牌识别与自动收费管理系统开发】
3.【手势识别系统开发】4.【人脸面部活体检测系统开发】
5.【图片风格快速迁移软件开发】6.【人脸表表情识别系统】
7.【YOLOv8多目标识别与自动标注软件开发】8.【基于YOLOv8深度学习的行人跌倒检测系统】
9.【基于YOLOv8深度学习的PCB板缺陷检测系统】10.【基于YOLOv8深度学习的生活垃圾分类目标检测系统】
11.【基于YOLOv8深度学习的安全帽目标检测系统】12.【基于YOLOv8深度学习的120种犬类检测与识别系统】
13.【基于YOLOv8深度学习的路面坑洞检测系统】14.【基于YOLOv8深度学习的火焰烟雾检测系统】
15.【基于YOLOv8深度学习的钢材表面缺陷检测系统】16.【基于YOLOv8深度学习的舰船目标分类检测系统】
17.【基于YOLOv8深度学习的西红柿成熟度检测系统】18.【基于YOLOv8深度学习的血细胞检测与计数系统】
19.【基于YOLOv8深度学习的吸烟/抽烟行为检测系统】20.【基于YOLOv8深度学习的水稻害虫检测与识别系统】
21.【基于YOLOv8深度学习的高精度车辆行人检测与计数系统】22.【基于YOLOv8深度学习的路面标志线检测与识别系统】
23.【基于YOLOv8深度学习的智能小麦害虫检测识别系统】24.【基于YOLOv8深度学习的智能玉米害虫检测识别系统】
25.【基于YOLOv8深度学习的200种鸟类智能检测与识别系统】26.【基于YOLOv8深度学习的45种交通标志智能检测与识别系统】
27.【基于YOLOv8深度学习的人脸面部表情识别系统】28.【基于YOLOv8深度学习的苹果叶片病害智能诊断系统】
29.【基于YOLOv8深度学习的智能肺炎诊断系统】30.【基于YOLOv8深度学习的葡萄簇目标检测系统】
31.【基于YOLOv8深度学习的100种中草药智能识别系统】32.【基于YOLOv8深度学习的102种花卉智能识别系统】
33.【基于YOLOv8深度学习的100种蝴蝶智能识别系统】34.【基于YOLOv8深度学习的水稻叶片病害智能诊断系统】
35.【基于YOLOv8与ByteTrack的车辆行人多目标检测与追踪系统】36.【基于YOLOv8深度学习的智能草莓病害检测与分割系统】
37.【基于YOLOv8深度学习的复杂场景下船舶目标检测系统】38.【基于YOLOv8深度学习的农作物幼苗与杂草检测系统】
39.【基于YOLOv8深度学习的智能道路裂缝检测与分析系统】40.【基于YOLOv8深度学习的葡萄病害智能诊断与防治系统】
41.【基于YOLOv8深度学习的遥感地理空间物体检测系统】42.【基于YOLOv8深度学习的无人机视角地面物体检测系统】
43.【基于YOLOv8深度学习的木薯病害智能诊断与防治系统】44.【基于YOLOv8深度学习的野外火焰烟雾检测系统】
45.【基于YOLOv8深度学习的脑肿瘤智能检测系统】46.【基于YOLOv8深度学习的玉米叶片病害智能诊断与防治系统】
47.【基于YOLOv8深度学习的橙子病害智能诊断与防治系统】48.【基于深度学习的车辆检测追踪与流量计数系统】
49.【基于深度学习的行人检测追踪与双向流量计数系统】50.【基于深度学习的反光衣检测与预警系统】
51.【基于深度学习的危险区域人员闯入检测与报警系统】52.【基于深度学习的高密度人脸智能检测与统计系统】
53.【基于深度学习的CT扫描图像肾结石智能检测系统】54.【基于深度学习的水果智能检测系统】
55.【基于深度学习的水果质量好坏智能检测系统】56.【基于深度学习的蔬菜目标检测与识别系统】
57.【基于深度学习的非机动车驾驶员头盔检测系统】58.【基于深度学习的太阳能电池板检测与分析系统】
59.【基于深度学习的工业螺栓螺母检测】60.【基于深度学习的金属焊缝缺陷检测系统】
61.【基于深度学习的链条缺陷检测与识别系统】62.【基于深度学习的交通信号灯检测识别】
63.【基于深度学习的草莓成熟度检测与识别系统】64.【基于深度学习的水下海生物检测识别系统】
65.【基于深度学习的道路交通事故检测识别系统】

二、机器学习实战专栏【链接】,已更新31期,欢迎关注,持续更新中~~
三、深度学习【Pytorch】专栏【链接】
四、【Stable Diffusion绘画系列】专栏【链接】
五、YOLOv8改进专栏【链接】持续更新中~~
六、YOLO性能对比专栏【链接】,持续更新中~

《------正文------》

目录

  • 如何使用YOLOv11进行目标检测
  • 介绍
  • YOLOv11关键创新
  • 如何将YOLOv 11用于图像检测
    • 步骤1:安装必要的库
    • 步骤2:导入库
    • 步骤3:选择模型型号
    • 步骤4:编写一个函数来预测和检测图像中的对象
    • 步骤5:使用YOLOv11检测图像中的对象
    • 步骤6:保存并绘制结果图像
    • 完整代码:
  • 如何将YOLOv11用于视频检测
    • 步骤1:安装必要的库
    • 步骤2和3:导入库与模型
    • 步骤4:创建Videowriter以保存视频的结果
    • 步骤5:使用YOLOv 11检测视频中的对象
    • 完整代码
  • 结论

如何使用YOLOv11进行目标检测

img

介绍

继YOLOv 8、YOLOv 9和YOLOv10之后,最近刚发布了最新的YOLOv11!这一新的迭代不仅建立在其版本的优势之上,而且还引入了几个突破性的增强功能,为目标检测和计算机视觉设定了新的基准。

与以前的版本一样,YOLOv 11擅长检测、分类和定位图像和视频中的对象。然而,它更进一步,通过整合显著的增强功能,提高了跨多个用例的性能和适应性。让我们来看看使YOLOv 11在该系列中脱颖而出的关键增强功能。

YOLOv11关键创新

  1. 增强的特征提取
    YOLOv11使用改进的主干和颈部架构,显著提高了特征提取能力。这导致更准确的物体检测和更轻松地处理复杂视觉任务的能力。
  2. 针对效率和速度进行了优化
    凭借精致的架构设计和优化的训练管道,YOLOv11在保持高精度的同时提供更快的处理速度。这种平衡确保了YOLOv11是实时和大规模应用的理想选择。
  3. 更高的精度,更少的参数
    YOLOv11m是YOLOv11的一个中等大小的变体,在COCO数据集上实现了更高的平均精度(mAP),同时使用的参数比YOLOv8m少22%。这种改进使其在不影响性能的情况下提高了计算效率。
  4. 跨环境的适应性
    无论是部署在边缘设备、云平台还是由NVIDIA GPU驱动的系统上,YOLOv11都能为各种部署场景提供最大的灵活性。
  5. 广泛的支持任务
    YOLOv 11将其功能扩展到传统的对象检测之外,以支持实例分割,图像分类,姿态估计和面向对象检测(OBB)。这种多功能性使其成为应对各种计算机视觉挑战的强大工具。

这些增强功能的集成使YOLOv 11成为尖端计算机视觉应用的强大引擎。请继续关注,我们将探索YOLOv 11如何突破这个动态领域的可能界限!

如何将YOLOv 11用于图像检测

步骤1:安装必要的库

pip install opencv-python ultralytics

步骤2:导入库

import cv2
from ultralytics import YOLO

步骤3:选择模型型号

model = YOLO("yolo11x.pt")

在这个网站上,您可以比较不同的模型,并权衡各自的优点和缺点。在这种情况下,我们选择yolov11x.pt。

步骤4:编写一个函数来预测和检测图像中的对象

def predict(chosen_model, img, classes=[], conf=0.5):if classes:results = chosen_model.predict(img, classes=classes, conf=conf)else:results = chosen_model.predict(img, conf=conf)return resultsdef predict_and_detect(chosen_model, img, classes=[], conf=0.5, rectangle_thickness=2, text_thickness=1):results = predict(chosen_model, img, classes, conf=conf)for result in results:for box in result.boxes:cv2.rectangle(img, (int(box.xyxy[0][0]), int(box.xyxy[0][1])),(int(box.xyxy[0][2]), int(box.xyxy[0][3])), (255, 0, 0), rectangle_thickness)cv2.putText(img, f"{result.names[int(box.cls[0])]}",(int(box.xyxy[0][0]), int(box.xyxy[0][1]) - 10),cv2.FONT_HERSHEY_PLAIN, 1, (255, 0, 0), text_thickness)return img, results

步骤5:使用YOLOv11检测图像中的对象

# read the image
image = cv2.imread("YourImagePath")
result_img, _ = predict_and_detect(model, image, conf=0.5)

步骤6:保存并绘制结果图像

cv2.imshow("Image", result_img)
cv2.imwrite("YourSavePath", result_img)
cv2.waitKey(0)

完整代码:

from ultralytics import YOLO
import cv2def predict(chosen_model, img, classes=[], conf=0.5):if classes:results = chosen_model.predict(img, classes=classes, conf=conf)else:results = chosen_model.predict(img, conf=conf)return resultsdef predict_and_detect(chosen_model, img, classes=[], conf=0.5, rectangle_thickness=2, text_thickness=1):results = predict(chosen_model, img, classes, conf=conf)for result in results:for box in result.boxes:cv2.rectangle(img, (int(box.xyxy[0][0]), int(box.xyxy[0][1])),(int(box.xyxy[0][2]), int(box.xyxy[0][3])), (255, 0, 0), rectangle_thickness)cv2.putText(img, f"{result.names[int(box.cls[0])]}",(int(box.xyxy[0][0]), int(box.xyxy[0][1]) - 10),cv2.FONT_HERSHEY_PLAIN, 1, (255, 0, 0), text_thickness)return img, resultsmodel = YOLO("yolo11x.pt")# read the image
image = cv2.imread("YourImagePath.png")
result_img, _ = predict_and_detect(model, image, classes=[], conf=0.5)cv2.imshow("Image", result_img)
cv2.imwrite("YourSavePath.png", result_img)
cv2.waitKey(0)

如何将YOLOv11用于视频检测

步骤1:安装必要的库

pip install opencv-python ultralytics

步骤2和3:导入库与模型

import cv2
from ultralytics import YOLOmodel = YOLO("yolo11x.pt")

步骤4:创建Videowriter以保存视频的结果

# defining function for creating a writer (for mp4 videos)
def create_video_writer(video_cap, output_filename):# grab the width, height, and fps of the frames in the video stream.frame_width = int(video_cap.get(cv2.CAP_PROP_FRAME_WIDTH))frame_height = int(video_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))fps = int(video_cap.get(cv2.CAP_PROP_FPS))# initialize the FourCC and a video writer objectfourcc = cv2.VideoWriter_fourcc(*'MP4V')writer = cv2.VideoWriter(output_filename, fourcc, fps,(frame_width, frame_height))return writer

步骤5:使用YOLOv 11检测视频中的对象

output_filename = "YourFilename.mp4"video_path = r"YourVideoPath.mp4"
cap = cv2.VideoCapture(video_path)
writer = create_video_writer(cap, output_filename)
while True:success, img = cap.read()if not success:breakresult_img, _ = predict_and_detect(model, img, classes=[], conf=0.5)writer.write(result_img)cv2.imshow("Image", result_img)cv2.waitKey(1)
writer.release()

完整代码

import cv2
from ultralytics import YOLOdef predict(chosen_model, img, classes=[], conf=0.5):if classes:results = chosen_model.predict(img, classes=classes, conf=conf)else:results = chosen_model.predict(img, conf=conf)return resultsdef predict_and_detect(chosen_model, img, classes=[], conf=0.5, rectangle_thickness=2, text_thickness=1):results = predict(chosen_model, img, classes, conf=conf)for result in results:for box in result.boxes:cv2.rectangle(img, (int(box.xyxy[0][0]), int(box.xyxy[0][1])),(int(box.xyxy[0][2]), int(box.xyxy[0][3])), (255, 0, 0), rectangle_thickness)cv2.putText(img, f"{result.names[int(box.cls[0])]}",(int(box.xyxy[0][0]), int(box.xyxy[0][1]) - 10),cv2.FONT_HERSHEY_PLAIN, 1, (255, 0, 0), text_thickness)return img, results# defining function for creating a writer (for mp4 videos)
def create_video_writer(video_cap, output_filename):# grab the width, height, and fps of the frames in the video stream.frame_width = int(video_cap.get(cv2.CAP_PROP_FRAME_WIDTH))frame_height = int(video_cap.get(cv2.CAP_PROP_FRAME_HEIGHT))fps = int(video_cap.get(cv2.CAP_PROP_FPS))# initialize the FourCC and a video writer objectfourcc = cv2.VideoWriter_fourcc(*'MP4V')writer = cv2.VideoWriter(output_filename, fourcc, fps,(frame_width, frame_height))return writermodel = YOLO("yolo11x.pt")output_filename = "YourFilename.mp4"video_path = r"YourVideoPath.mp4"
cap = cv2.VideoCapture(video_path)
writer = create_video_writer(cap, output_filename)
while True:success, img = cap.read()if not success:breakresult_img, _ = predict_and_detect(model, img, classes=[], conf=0.5)writer.write(result_img)cv2.imshow("Image", result_img)cv2.waitKey(1)
writer.release()

结论

在本教程中,我们学习了如何使用YOLOv 11检测图像和视频中的对象。如果你觉得这段代码很有帮助,感谢点赞关注!


关注文末名片G-Z-H:【阿旭算法与机器学习】,发送【开源】可获取更多学习资源

在这里插入图片描述

好了,这篇文章就介绍到这里,喜欢的小伙伴感谢给点个赞和关注,更多精彩内容持续更新~~
关于本篇文章大家有任何建议或意见,欢迎在评论区留言交流!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/446215.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

《数字信号处理》学习08-围线积分法(留数法)计算z 逆变换

目录 一,z逆变换相关概念 二,留数定理相关概念 三,习题 一,z逆变换相关概念 接下来开始学习z变换的反变换-z逆变换(z反变化)。 由象函数 求它的原序列 的过程就称为 逆变换。即 。 求z逆变换…

linux线程 | 线程的控制(二)

前言: 本节内容是线程的控制部分的第二个小节。 主要是列出我们的线程控制部分的几个细节性问题以及我们的线程分离。这些都是需要大量的代码去进行实验的。所以, 准备好接受新知识的友友们请耐心观看。 现在开始我们的学习吧。 ps:本节内容适合了解线程…

如何批量从sql语句中提取表名

简介 使用的卢易表 的提取表名功能,可以从sql语句中批量提取表名。采用纯文本sql语法分析,无需连接数据库,支持从含非sql语句的文件文件中提取,支持各类数据库sql语法。 特点 快:从成百个文件中提取上千个表名只需1…

JAVA开发中SpringMVC框架的使用及常见的404问题原因以及SpringMVC框架基于注解的开发实例

一、JAVA开发中SpringMVC框架的使用及常见的404问题原因 使用SpringMVC建立一个web项目,在IDEA中file->new->project建立一个空项目project。不用选择create from archetype从模板创建。然后在项目的pom.xml中添加公共的依赖包括org.springframework&#xff…

400行程序写一个实时操作系统RTOS(开篇)

笔者之前突发奇想,准备写一个极其微小的实时操作系统内核,在经过数天的努力后,这个RTOS诞生了。令读者比较意外的是,它的程序只有400行左右。但就是这短短的400行,完成了动态内存管理、多线程、优先级、临界区、低功耗…

【原创】Android Studio 中安装大模型辅助编码插件:通义灵码

在 Android Studio 中内置了 Ginimi 预览版,但需要“加速器”才可使用。 在国内有平替的软件同样可以使用,比如 阿里的通义灵码,智谱的CodeGeeX等,从功能和使用上来说都是大同小异。 这里我们以通义灵码为例来讲解其安装和使用 通…

最新Prompt预设词指令教程大全ChatGPT、AI智能体(300+预设词应用)

使用指南 直接复制在AI工具助手中使用(提问前) 可以前往已经添加好Prompt预设的AI系统测试使用(可自定义添加使用) SparkAi系统现已支持自定义添加官方GPTs(对专业领域更加专业,支持多模态文档&#xff0…

github下载文件的两种方式(非git形式)

1.以下面的图为例 ,可以直接点击右上方的绿色Code按键,在弹出的列表中选择Download Zip选项,即可下载。 2.如果下载的是单独的某一个文件,则可以按照下图的格式点击下图所示的那个下载的图标即可。

IP地址如何支持远程办公?

由于当今社会经济的飞速发展,各个方向的业务都不免接触到跨省、跨市以及跨国办公的需要,随之而来的远程操作的不方便,加载缓慢,传输文件时间过长等困难,如何在万里之外实现远程办公呢?我们以以下几点进行阐…

C3D网络介绍及代码撰写详解(总结3)

可以从本人以前的文章中可以看出作者以前从事的是嵌入式控制方面相关的工作,是一个机器视觉小白,之所以开始入门机器视觉的学习主要是一个idea,想把机器视觉与控制相融合未来做一点小东西。废话不多说开始正题。(如有侵权立即删稿…

初级前端面试(2)

1.讲一下闭包相关知识,和普通函数有什么区别 闭包是什么:JS中内层函数可以访问外层函数的变量,外层函数无法操作内存函数的变量的特性。我们把这个特性称作闭包。 闭包的好处: 隔离作用域,保护私有变量;…

解决海外社媒风控问题的工具——云手机

随着中国企业逐步进入海外市场,海外社交媒体的风控问题严重影响了企业的推广效果与账号运营。这种背景下,云手机作为一种新型技术解决方案,正日益成为企业应对海外社媒风控的重要工具。 由于海外社媒的严格监控,企业经常面临账号流…

数据库的相关知识

数据库的相关知识 1.数据库能够做什么? 存储大量数据,方便检索和访问保持数据信息的一致、完整共享和安全通过组合分析,产生新的有用信息 2.数据库作用? 存储数据、检索数据、生成新的数据 3.数据库要求? 统一、…

【Windows】【DevOps】Windows Server 2022 安装ansible,基于powershell实现远程自动化运维部署 入门到放弃!

目标服务器安装openssh server参考 【Windows】【DevOps】Windows Server 2022 在线/离线 安装openssh实现ssh远程登陆powershell、scp文件拷贝-CSDN博客 注意:Ansible不支持Windows操作系统部署 根据官方说明: Windows Frequently Asked Questions —…

云计算(第二阶段):mysql后的shell

第一章:变量 前言 什么是shell Shell 是一种提供用户与操作系统内核交互的工具,它接受用户输入的命令,解释后交给操作系统去执行。它不仅可以作为命令解释器,还可以通过脚本完成一系列自动化任务。 shell的特点 跨平台&#xff1a…

人工智能长期记忆的新突破:HippoRAG的创新框架

人工智能咨询培训老师叶梓 转载标明出处 大模型(LLMs)在预训练后,如何有效地整合大量新经验,同时避免灾难性遗忘,一直是人工智能领域的难题。尽管已有的检索增强生成(RAG)方法为LLMs提供了长期…

Qt事件——鼠标事件

通过label来显示各种事件 鼠标按下事件 //按下显示坐标 void MyLabel::mousePressEvent(QMouseEvent * ev) {int i ev->x();int j ev->y();//判断按下的鼠标键位if (ev->button() Qt::LeftButton) {qDebug() << "LeftButton";}else if (ev->bu…

SpringCloud-服务治理-Eureka

本篇是从基础方便讲解一些springcloud-服务治理-Eureka中的一些理论性的故事&#xff1b;具体的代码不详细展示&#xff1b;后面的文章会将源码进行整理&#xff0c;并且将源码的github地址上传。 1.什么是服务治理 专治分布式系统 (一)高可用性&#xff1a;服务治理框架保证…

【环境搭建】远程服务器搭建ElasticSearch

参考&#xff1a; 非常详细的阿里云服务器安装ElasticSearch过程..._阿里云服务器使用elasticsearch-CSDN博客 服务器平台&#xff1a;AutoDL 注意&#xff1a; 1、切换为非root用户&#xff0c;su 新用户名&#xff0c;否则ES无法启动 2、安装过程中没有出现设置账号密码…