【计算机网络】详谈TCP协议确认应答机制捎带应答机制超时重传机制连接管理机制流量管理机制滑动窗口拥塞控制延迟应答

一、TCP 协议段格式 

1.1、4位首部长度

        4位首部长度的基本单位是4字节,也就是说如果4位首部长度填6,那报头长度就是24字节。报头长度的取值范围为[0,60]字节,也就是说选项的最大长度为40字节。 

二、确认应答机制

         发送数据和发送应答,一般是由双方操作系统自动完成的,通信细节由操作系统自动解决了。服务端和客户端发送的都是报文

2.1、32位序号

        客户端可能一次性给服务端发送了多条报文,为了区分报文,每一个TCP报文在发送时都会填写上序号。如果服务端收到了多条报文,服务端就可以按照序号在接收缓冲区中对报文进行按序到达。

2.2、32位确认序号

        收到的报文的序号加1就是服务端发送回给客户端的报文的确认序号。这就表明服务端告诉客户端,该确认序号之前的数据我已经全部收到了,下次发送请从这次发送的确认序号开始。

三、捎带应答机制

        捎带应答机制可以用来解答为什么tcp报头里序号和确认序号要分开。在真实的tcp通信过程中,一个报文可能既作为应答又携带了要传送的信息,这个时候就需要用确认序号标识应答,序号标识要传送的信息,如果序号和确认序号不分开,就无法实现捎带应答机制

四、标志位

4.1、SYN、ACK、FIN

        我们的服务器在通信的过程中,一定会收到不同客户端的请求建立连接、发送正常报文、请求断开连接的报文,所以TCP报文是需要类型的,用于区分不同的报文。标志位就是用来区分不同报文的。在服务器和客户端进行三次握手时,客户端先向服务器发送SYN标志位置一的TCP报文(此时服务端要处于listen状态),服务端收到了再接着向客户端发送SYN标志位和ACK标志位置一的TCP报文,客户端再向服务器发送ACK标志位置一的TCP报文(此时服务端要处于accept状态),完成三次握手。操作系统要对连接进行管理,就会消耗时间和空间成本。四次挥手时客户端先给服务器发送FIN标志位为1的报文,服务器响应回ACK标志位为1的报文;同样的,服务器也要给客户端发送FIN标志位为1的报文,客户端响应回ACK标志位为1的报文,这就是四次挥手。

        TCP报文中ACK标志位置一加上数据就可以实现捎带应答。

4.2、URG

        URG标志位被置一的报文16位紧急指针被启用,紧急指针对应的数据会被上层优先处理。16位紧急指针表示紧急数据在数据中的偏移量。紧急数据只有一个字节

五、超时重传机制

        在此有一个约定,如果我没有收到应答,就认为对方没有收到报文。如果超过一个固定的时间我没有收到应答,我这端就要进行超时重传。Linux中(BSDUnix和Windows也是如此),超时以500ms为一个单位进行控制,每次判定超时重发的超时时间都是500ms的整数倍。如果重发一次之后,仍然得不到应答,等待2*500ms后再进行重传。如果仍然得不到应答,等待4*500ms进行重传。依次类推,以指数形式递增。累计到一定的重传次数,TCP认为网络或者对端主机出现异常,强制关闭连接。

六、连接管理机制

        三次握手四次挥手在上面标志位中已经有提到了。在此做一个补充,三次握手并不能保证通信双方百分百把连接建立好了,而是经过三次握手后,通信双方都认为链接已经建立好了。如果三次握手并没有完成客户端直接向服务器发送数据,服务器会向客户端发送回RST标志位置一的报文,让客户端回到SYN_SENT状态重新发送三次握手。RST置一就是让双方链接重置,重新进行三次握手,用来解决链接出现异常的问题

        一次握手或者是两次握手服务器都可能受到客户端一次性发过来的大量的SYN所形成的SYN洪水攻击,此时服务器的链接数可能瞬间被打满,无法再接受其他链接的到来,这样一台客户端就可以让服务端瘫痪。三次握手服务器再建立好链接之前客户端要先建立好链接,这样服务器不太可能因为一台主机的攻击就陷入瘫痪,至少需要多台主机,三次握手首先解决了一次两次握手所存在的这一明显漏洞。另外一点,三次握手过程中,客户端和服务器都会经过一次收发,也就确认了自己的收发能力(确认全双工),也可以确保双方OS是健康的且愿意通信的。

        在四次挥手时,如果服务器主动断开链接,服务器会在TIME_WAIT状态下等待一段时间,此时如果再绑定该端口就会绑定失败,导致服务器无法立即重启。使用setsockpot可以设置端口号复用。TIME_WAIT状态是为了等待网络中历史报文的消散,在等的这段时间内也可以等待如果最后一次挥手的ACK丢了,一方再发送FIN时我可以收到然后再发ACK,尽量的保证四次挥手的完成。

七、流量控制机制

        16位窗口大小可以用来通知对方自己的接收能力。 接收端将自己可以接收的缓冲区大小放入TCP首部中的 "窗口大小" 字段,通过 ACK 端通知发送端;窗口大小字段越大,说明网络的吞吐量越高;接收端一旦发现自己的缓冲区快满了,就会将窗口大小设置成一个更小的值通知给发送端;发送端接受到这个窗口之后,就会减慢自己的发送速度;如果接收端缓冲区满了,就会将窗口置为 0;这时发送方不再发送数据,但是需要定期发送一个窗口探测数据段,使接收端把窗口大小告诉发送端。如果我这一端的窗口大小一直为0,另一端就会给我发送PSH标志位为1的报文,催促我这一边的上层尽快地把数据读走(需要数据尽快交付的情况都可以将PSH标志位置一)

八、滑动窗口

        滑动窗口是发送缓冲区的一部分, 滑动窗口里的数据无需等待确认应答而可以继续发送。不考虑网络状况,滑动窗口的大小一般就是对方接收缓冲区中剩余空间的大小。为了能够实现超时重传,一旦将滑动窗口中的数据发出去后,滑动窗口不会立即向右移动,要等待报文确认收到应答后才会向右移动,这也保证了如果没有收到应答超时了可以重发报文。滑动窗口的变更是根据收到的确认序号来变更的

        假设是1001到2000这一段报文丢了, 1001到2000后续的被对方收到的报文所返回的ACK报文中的确认序号会一直是1001,告诉我是1001开始的这一段报文丢了,要进行重发。

 九、拥塞控制

        虽然 TCP 有了滑动窗口,能够高效可靠的发送大量的数据。但是如果在刚开始阶段就发送大量的数据,仍然可能引发问题。因为网络上有很多的计算机,可能当前的网络状态就已经比较拥堵。在不清楚当前网络状态下,贸然发送大量的数据,是很有可能引起雪上加霜的。TCP引入 慢启动机制, 先发少量的数据,探探路,摸清当前的网络拥堵状态,再决定按照多大的速度传输数据。
        此处引入一个概念称为拥塞窗口。 发送开始的时候, 定义拥塞窗口大小为 1;每次收到一个 ACK 应答,拥塞窗口加 1;每次发送数据包的时候, 将拥塞窗口和接收端主机反馈的窗口大小做比较, 取较小的值作为实际发送的滑动窗口像上面这样的拥塞窗口增长速度,是指数级别的。"慢启动" 只是指初使时慢,但是增长速度非常快。为了不增长的那么快, 因此不能使拥塞窗口单纯的加倍.此处引入一个叫做慢启动的阈值。当拥塞窗口超过这个阈值的时候,不再按照指数方式增长,而是按照线性方式增长。
        当 TCP 开始启动的时候,慢启动阈值等于拥塞窗口最大值;在每次超时重发的时候,慢启动阈值会变成原来的一半,同时拥塞窗口置回1;少量的丢包,我们仅仅是触发超时重传;大量的丢包,我们就认为网络拥塞;当 TCP 通信开始后,网络吞吐量会逐渐上升;随着网络发生拥堵,吞吐量会立刻下降;拥塞控制,归根结底是 TCP 协议想尽可能快的把数据传输给对方,但是又要避免给网络造成太大压力的折中方案。
        数据链路层中的MTU限制了一次性发送的报文长度不能太长

十、延迟应答

        如果接收数据的主机立刻返回 ACK 应答,这时候返回的窗口可能比较小。假设接收端缓冲区为 1M。一次收到了 500K 的数据;如果立刻应答,返回的窗口就是 500K;但实际上可能处理端处理的速度很快,10ms 之内就把 500K 数据从缓冲区消费掉了;在这种情况下,接收端处理还远没有达到自己的极限,即使窗口再放大一些,能处理过来,如果接收端稍微等一会再应答,比如等待 200ms 再应答, 那么这个时候返回的窗口大小就是1M。 窗口越大,网络吞吐量就越大,传输效率就越高。我们的目标是在保证网络不拥塞的情况下尽量提高传输效率

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/446961.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue3 在store的index.js

导入vuex,在store的index.js创建store对象 在main.js挂载store import store from ./storenew Vue ({/* 将store对象实例挂载到vue实例中 所有组件就可以直接从store中获取全局数据了*/ store, render: h > h(App) }).$mount(#app) 在store中的index.js进行声明…

Chainbase :链原生的 Web3 AI 基建设施

“随着 Chainbase 在生态系统和市场方面的进一步拓展,其作为链原生 Web3 AI 基建设施的价值将愈发显著。” 算法、算力和数据是 AI 技术的三大核心要素。实际上,几乎所有的 AI 大模型都在不断革新算法,以确保模型能够跟上行业的发展趋势&…

react实现实时计时的最简方式

js中时间的处理,不借助于moment/dayjs这样的工具库,原生获取格式化的时间,最简单的实现方式可以参考下面这样。 实现效果 代码实现 封装hooks import { useState, useEffect } from "react";export function useCountTime() {c…

手动nginx平滑升级

一、下载nginx安装包 wget http://nginx.org/download/nginx-1.24.0.tar.gz 二、解压缩 tar -zxf nginx-1.24.0.tar.gz 三、进入解压缩后文件 3.1 cd /usr/local/nginx/sbin 预编译 进入如下命令 ./configure -prefix/usr/local/nginx --with-http_ssl_module --with…

免费设计元素下载,设计师必备,建议收藏!

设计师找设计素材、免抠元素,背景图等等,就上这6个网站,免费下载! 1、菜鸟图库 免抠图片素材-免抠图片模板免费下载 - 菜鸟图库 这是一个专门为新手设计师提供免费设计素材的网站,站内有非常多设计素材,其…

为什么说期限提醒系统是项目申报的必备工具?

在项目申报的征程中,时间就是生命,时机决定成败。然而,当前项目申报时间管理却面临着诸多棘手的问题,这也让期限提醒系统成为了必不可少的必备工具。那么,它究竟为何如此关键? 目前项目申报时间管理方面面临…

uniapp 锁屏显示插件 Ba-LockShow(可让vue直接具备锁屏显示能力)

简介 Ba-LockShow 是一款可以直接使uniapp的vue界面在锁屏页展示的插件。 支持使vue直接具备锁屏显示能力支持设置锁屏显示和不显示支持唤醒屏幕 截图展示(仅参考) 支持定制、本地包、源码等,有建议和需要,请点击文章结尾“Unia…

世界空间到观察空间的矩阵

1)世界空间到观察空间的矩阵 2)Addressable在不同工程中如何实现打包和加载 3)如何设计角色在下蹲时允许跳跃 4)如何实时编辑玩家的近裁剪面距离 这是第403篇UWA技术知识分享的推送,精选了UWA社区的热门话题&#xff0…

算法系列之十二:多边形区域填充算法--扫描线填充算法(有序边表法)

二、扫描线算法(Scan-Line Filling) 扫描线算法适合对矢量图形进行区域填充,只需要直到多边形区域的几何位置,不需要指定种子点,适合计算机自动进行图形处理的场合使用,比如电脑游戏和三维CAD软件的渲染等等…

智能优化算法-蛇优化算法(SO)(附源码)

目录 1.内容介绍 2.部分代码 3.实验结果 4.内容获取 1.内容介绍 蛇优化算法 (Snake Optimization Algorithm, SO) 是一种基于群体智能的元启发式优化算法,它模拟了蛇的捕食行为、运动模式和社会互动,用于解决复杂的优化问题。 SO的工作机制主要包括&a…

二分类-多机器学习模型算法实现对比

准备数据 import pandas as pd import numpy as np import matplotlib.pyplot as plt from sklearn.preprocessing import StandardScaler from sklearn.preprocessing import OneHotEncoder from sklearn.preprocessing import PolynomialFeatures from sklearn.compose impo…

每日一刷——10.14——括号匹配(手写栈来实现)

栈与队列题目 第一题 题目 问题描述】设计一个算法判别一个算术表达式的圆括号是否正确配对 【输入形式】一个以为结尾的算术表达式 【输出形式】若配对,则输出圆括号的对数;否则输出no 【样例输入】 (ab)/(cd) 【样例输出】 2 【样例说明】共有两对括…

学习Redisson实现分布式锁

官网&#xff1a;https://redisson.org/ 官方文档&#xff1a;https://redisson.org/docs/getting-started/ 官方中文文档&#xff1a;https://github.com/redisson/redisson/wiki/%E7%9B%AE%E5%BD%95 1、引入依赖 <!--redisson--> <dependency><groupId>or…

【软件工程】数据流图DFD

文章目录 数据流图DFD概述一、数据流图的基本元素二、数据流图的绘制步骤三、数据流图的分层设计四、数据流图的绘制原则五、数据流图的应用 一个完整的数据流包含哪些要素从图中找出所有数据流1. **理解数据流图的结构**2. **识别外部实体**3. **追踪数据流**4. **记录数据流*…

SAP S/4 HANA 销售返利

目录 1 简介 2 后台配置 3 主数据 4 业务操作 4.1 场景 1 - 返利应计 4.2 场景 2 - 最终结算 1 简介 在过去 SAP ECC 把“返利”功能集成在了 SD 模块当中&#xff0c;而 SAP S/4 HANA 把“返利”集成在了结算管理功能模块当中。究其原因&#xff0c;主要是 ECC “返利”…

笔记-stm32移植ucos

文章目录 一、UCOS的基础知识1.1 前后台系统:1.2 RTOS系统可剥夺型内核:前后台系统和RTOS系统 1.3 UCOS系统简介学习方法 二、ucossii移植Step1&#xff1a;在工程中建立存放UCOSS代码的文件夹UCOSIIStep2:向CORE文件夹添加文件Step3:向Config文件夹添加文件Step4:向port文件夹…

本地拉取Docker镜像打包导入远程服务器

起因是因为使用远程服务器拉取镜像时&#xff0c;由于网络问题一直拉不成功&#xff0c;使用国内镜像由于更新不及时&#xff0c;国内镜像没有最新的 docker 镜像。最后使用本地的计算机&#xff0c;通过代理下载最新的镜像后打包成 tar&#xff0c; 然后上传到远程服务器进行导…

electron-vite打包踩坑记录

electron-vite打包踩坑记录 大前端已成趋势&#xff0c;用electron开发桌面端应用越来越普遍 近期尝试用electronvite开发了个桌面应用&#xff0c;electron-vite地址&#xff0c;可用使用vue开发&#xff0c;vite打包&#xff0c;这样就很方便了 但是&#xff0c;我尝试了一…

【机器学习】并行计算(parallel computation)Part1

为什么我们在机器学习中需要用到并行计算呢&#xff0c;因为现在最流行的机器学习算法都是神经网络&#xff0c;神经网络模型的计算量、参数量都很大&#xff0c;比如ResNet-50参数量为25M。而我们在训练的时候使用的数据集也很大&#xff0c;比如ImageNet数据集含有14M张图片。…

FileInputStream类

目录 1.案例代码&#xff1a; 2.注意细节 3.FileInputStream循环读取 1.案例代码&#xff1a; 准备的txt文件 结果&#xff1a; 如果需要输出原本的字母&#xff0c;强制转换为char即可&#xff1a; 结果&#xff1a; 2.注意细节 &#xff08;1&#xff09;如果文件不存在…