【OpenCV】(六)—— 阈值处理

阈值处理(Thresholding)用于将灰度图像转换为二值图像。通过设定一个或多个阈值,可以将图像中的像素分为不同的类别,通常用于分割前景和背景、简化图像、去除噪声等任务。OpenCV 提供了多种阈值处理方法,下面介绍基本阈值处理和自动阈值处理。

基本阈值处理

基本阈值处理方法cv2.threshold,函数原型如下:

ret, thresh = cv2.threshold(src, thresh, maxval, type)

参数说明:

  • src:输入图像,通常是单通道的灰度图像。
  • thresh:阈值。
  • maxval:超过或低于阈值时赋予的新值。
  • type:阈值类型,常见的有以下几种:
    • cv2.THRESH_BINARY:如果像素值大于阈值,设置为 maxval;否则设置为 0。
    • cv2.THRESH_BINARY_INV:如果像素值大于阈值,设置为 0;否则设置为 maxval
    • cv2.THRESH_TRUNC:如果像素值大于阈值,设置为阈值;否则保持不变。
    • cv2.THRESH_TOZERO:如果像素值大于阈值,保持不变;否则设置为 0。
    • cv2.THRESH_TOZERO_INV:如果像素值大于阈值,设置为 0;否则保持不变。

【示例】

import matplotlib.pyplot as plt
img = cv2.imread('cat.jpg',0)
# 阈值处理只接收一个通道的数据
ret, thresh1 = cv2.threshold(img,127,255,cv2.THRESH_BINARY)
ret, thresh2 = cv2.threshold(img,127,255,cv2.THRESH_BINARY_INV)
ret, thresh3 = cv2.threshold(img,127,255,cv2.THRESH_TRUNC)
ret, thresh4 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO)
ret, thresh5 = cv2.threshold(img,127,255,cv2.THRESH_TOZERO_INV)titles = ['Orininal Image','BINARY','BINARY_INV','TRUNC','TOZERO','TOZERO_INV']
images =[img,thresh1,thresh2,thresh3,thresh4,thresh5]for i in range(6):plt.subplot(2,3,i+1), plt.imshow(images[i],'gray')plt.title(titles[i])plt.xticks([]),plt.yticks([])print(ret)

运行结果:

在这里插入图片描述

自动阈值处理

自适应阈值处理适用于图像中光照不均匀或背景复杂的情况。它会根据图像的局部区域自动计算阈值。

cv2.adaptiveThreshold 函数原型如下:

thresh = cv2.adaptiveThreshold(src, maxValue, adaptiveMethod, thresholdType, blockSize, C)

参数说明:

  • src:输入图像,通常是单通道的灰度图像。
  • maxValue:超过或低于阈值时赋予的新值。
  • adaptiveMethod:自适应方法,常见的有:
    • cv2.ADAPTIVE_THRESH_MEAN_C:阈值是邻域的平均值减去常数 C
    • cv2.ADAPTIVE_THRESH_GAUSSIAN_C:阈值是邻域的加权平均值减去常数 C
  • thresholdType:阈值类型,通常使用 cv2.THRESH_BINARYcv2.THRESH_BINARY_INV
  • blockSize:邻域大小,必须是奇数。
  • C:从平均值或加权平均值中减去的常数。

【示例】

# 自动阈值处理
# 读取图像并转换为灰度图像
img = cv2.imread('cat.jpg', cv2.IMREAD_GRAYSCALE)# 应用自适应阈值处理
adaptive_mean = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_MEAN_C, cv2.THRESH_BINARY, 11, 2)
adaptive_gaussian = cv2.adaptiveThreshold(img, 255, cv2.ADAPTIVE_THRESH_GAUSSIAN_C, cv2.THRESH_BINARY, 11, 2)# 显示结果
cv2.imshow('Adaptive Mean Thresholding', adaptive_mean)
cv2.imshow('Adaptive Gaussian Thresholding', adaptive_gaussian)cv2.waitKey(0)

在这里插入图片描述

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/448034.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

让AI像人一样思考和使用工具,reAct机制详解

reAct机制详解 reAct是什么reAct的关键要素reAct的思维过程reAct的代码实现查看效果引入依赖,定义模型定义相关工具集合工具创建代理启动测试完整代码 思考 reAct是什么 reAct的核心思想是将**推理(Reasoning)和行动(Acting&…

探索人工智能:深度解析未来科技的核心驱动力

目录 🍔 人工智能的应用方向 🍔 人工智能的发展历史 🍔 人工智能、机器学习、深度学习关系 🍔 为什么学习机器学习? 🍔 小节 学习目标 🍀 了解人工智能的应用方向 🍀 了解人工智…

【千库网-注册安全分析报告】

前言 由于网站注册入口容易被黑客攻击,存在如下安全问题: 暴力破解密码,造成用户信息泄露短信盗刷的安全问题,影响业务及导致用户投诉带来经济损失,尤其是后付费客户,风险巨大,造成亏损无底洞…

iPad备份软件哪个好?好用的苹果备份软件推荐

苹果手机在将数据备份到电脑时,需要通过第三方的管理软件,才可以将手机连接到电脑进行备份。苹果手机备份软件有很多,常用的有:爱思助手、iMazing、iTuns等。那么这三款常用的备份软件究竟哪款更好呢?下面就给大家盘点…

uniapp学习(004-2 组件 Part.2生命周期)

零基础入门uniapp Vue3组合式API版本到咸虾米壁纸项目实战,开发打包微信小程序、抖音小程序、H5、安卓APP客户端等 总时长 23:40:00 共116P 此文章包含第31p-第p35的内容 文章目录 组件生命周期我们主要使用的三种生命周期setup(创建组件时执行)不可以操作dom节点…

Kimi AI助手重大更新:语音通话功能闪亮登场!

Kimi人工智能助手近日发布了一项令人瞩目的重大更新,其中最引人注目的是新增的语音通话功能。这一创新不仅拓展了用户与AI互动的方式,还为学习和工作场景提供了突破性的解决方案。 Ai 智能办公利器 - Ai-321.com 人工智能 - Ai工具集 - 全球热门人工智能…

使用 python 下载 bilibili 视频

本文想要达成的目标为:运行 python 代码之后,在终端输入视频链接,可自动下载高清 1080P 视频并保存到相应文件夹。 具体可分为两大步:首先,使用浏览器开发者工具 F12 获取请求链接相关信息(根据 api 接口下…

性能测试持续继承 CICD

目录 一、如何实现性能测试持续继承操作 下载ant 验证ant是否安装成功 二、jmeterant结合 1、我们需要把jmeter中extres 中的ant-jmeter-1.1.1.jar 复制到ant的安装目录中的lib目录中 2、把jmeter中extres中的build.xml 复制到ant的安装目录中的bin目录 3、编辑build.x…

uniapp 设置 tabbar 的 midButton 按钮

效果展示&#xff1a; 中间的国际化没生效&#xff08;忽略就行&#xff09; 示例代码&#xff1a; 然后在 App.vue 中进行监听&#xff1a; <script>export default {onLaunch(e) {// #ifdef APPuni.onTabBarMidButtonTap(()>{console.log("中间按钮点击回调…

Nacos安装指南

1.Windows安装 开发阶段采用单机安装即可。 1.1.下载安装包 在Nacos的GitHub页面,提供有下载链接,可以下载编译好的Nacos服务端或者源代码: GitHub主页:https://github.com/alibaba/nacos GitHub的Release下载页:https://github.com/alibaba/nacos/releases 如图: …

C1. Adjust The Presentation (Easy Version) 双指针

C1. Adjust The Presentation (Easy Version) 妈呀, 最难读懂的一道题(英语不好) 原题 思路 这道题读懂之后就是双指针. 不难想到只要之前出现过, 就一定可以展示出来, 唯一需要注意的时不能在a里有多余的科幻片 代码 #include <bits/stdc.h> #define int long long…

Python爬虫之正则表达式于xpath的使用教学及案例

正则表达式 常用的匹配模式 \d # 匹配任意一个数字 \D # 匹配任意一个非数字 \w # 匹配任意一个单词字符&#xff08;数字、字母、下划线&#xff09; \W # 匹配任意一个非单词字符 . # 匹配任意一个字符&#xff08;除了换行符&#xff09; [a-z] # 匹配任意一个小写字母 […

牛客:Holding Two,Inverse Pair,Counting Triangles

Holding Two 题目描述 登录—专业IT笔试面试备考平台_牛客网 ​​运行代码 #include<bits/stdc.h> using namespace std; const int N3e45; string s1,s2; int main(){int n,m;cin>>n>>m;for(int i0;i<m;i){if(i&1){s10;s21;} else{s11;s20;} }fo…

jvm内存溢出问题排查Java服务自动停止问题排查

Java服务自动停止&#xff0c;Java服务内存溢出问题解决记录。 过程描述 服务器上的一个项目突然服务不了了&#xff0c;登录服务器一看&#xff0c;服务被停了&#xff0c;第一反应大概率就是内存溢出导致的&#xff0c;结果查看日志没有任何报错&#xff0c;就很奇怪&#…

鸿蒙开发案例:HarmonyOS NEXT语法实现2048

【实现的功能】 • 游戏逻辑&#xff1a;实现了2048游戏的核心逻辑&#xff0c;包括初始化游戏盘面、添加随机方块、处理四个方向的滑动操作等。 • UI展示&#xff1a;构建了游戏的用户界面&#xff0c;显示得分、游戏盘面&#xff0c;并提供了重新开始按钮。 • 用户交互&…

OpenAI 公布了其新 o1 模型家族的元提示(meta-prompt)

每周跟踪AI热点新闻动向和震撼发展 想要探索生成式人工智能的前沿进展吗&#xff1f;订阅我们的简报&#xff0c;深入解析最新的技术突破、实际应用案例和未来的趋势。与全球数同行一同&#xff0c;从行业内部的深度分析和实用指南中受益。不要错过这个机会&#xff0c;成为AI领…

出处不详 取数游戏

目录 取数游戏题目描述背景输入输出数据范围 题解解法优化 打赏 取数游戏 题目描述 背景 两人将 n n n个正整数围成一个圆环&#xff0c;规则如下&#xff1a; 第一名玩家随意选取数字&#xff1b;第二名玩家从与第一名玩家相邻的两个数字中选择一个&#xff1b;而后依次在…

科技云报到:大模型时代下,向量数据库的野望

科技云报到原创。 自ChatGPT爆火&#xff0c;国内头部平台型公司一拥而上&#xff0c;先后发布AGI或垂类LLM&#xff0c;但鲜有大模型基础设施在数据层面的进化&#xff0c;比如向量数据库。 在此之前&#xff0c;向量数据库经历了几年的沉寂期&#xff0c;现在似乎终于乘着Ch…

python 位运算 笔记

起因&#xff0c; 目的: 位运算&#xff0c;令我头疼的地方。算法题里面也是经常见到。 位运算。 按位或&#xff0c;OR, | , 只要有一个为1&#xff0c; 结果就是1&#xff0c;否则为0按位异或&#xff0c;XOR, ^, 2个数不同&#xff0c;结果为1&#xff0c; 否则为0&#…

一文介绍SQL标准1986~2023的演变

SQL标准1986年制定第一版&#xff0c;到最新的2023版&#xff0c;已经有38年的历史&#xff0c;现在依然是计算机非常活跃的语言&#xff0c;50%的程序员都能掌握SQL&#xff0c;数据分析师也是SQL的主要使用人员之一。 从早期的基本语法&#xff0c;到融合了XML、JSON等复杂数…