Python OpenCV精讲系列 - 三维重建深入理解(十七)

在这里插入图片描述

💖💖⚡️⚡️专栏:Python OpenCV精讲⚡️⚡️💖💖
本专栏聚焦于Python结合OpenCV库进行计算机视觉开发的专业教程。通过系统化的课程设计,从基础概念入手,逐步深入到图像处理、特征检测、物体识别等多个领域。适合希望在计算机视觉方向上建立坚实基础的技术人员及研究者。每一课不仅包含理论讲解,更有实战代码示例,助力读者快速将所学应用于实际项目中,提升解决复杂视觉问题的能力。无论是入门者还是寻求技能进阶的开发者,都将在此收获满满的知识与实践经验。

引言

三维重建技术是计算机视觉中的一个重要分支,它能够从二维图像中恢复出三维场景。这项技术在诸多领域有着广泛的应用,如虚拟现实、增强现实、机器人导航和3D建模等。OpenCV作为一款功能强大的开源计算机视觉库,提供了许多用于三维重建的功能。本文将详细介绍三维重建的基本原理、关键技术和使用OpenCV实现三维重建的具体方法。

三维重建概述

定义

三维重建是指从多幅图像中恢复出三维场景的过程。这些图像可以由单个相机在不同的角度拍摄(称为单目重建),或者由多个同步拍摄的相机(称为多目重建)。

三维重建的关键步骤

  1. 特征检测与匹配:检测图像中的特征点,并在不同图像间匹配这些点。
  2. 几何校正:估计相机的内参和外参,以校正图像的几何畸变。
  3. 三维点云构建:根据匹配的特征点计算出三维空间中的坐标。
  4. 三维模型构建:基于点云数据构建完整的三维模型。

基本原理

特征检测与匹配

SIFT

尺度不变特征变换(SIFT)是一种用于检测和描述图像中局部特征的算法。SIFT特征具有尺度不变性和旋转不变性,在不同的光照条件下也表现稳定。

SURF

加速鲁棒特征(SURF)是一种比SIFT更快的特征检测和描述子算法。它使用积分图像来提高计算效率,并且保持了良好的鲁棒性。

ORB

定向快速和二进制描述符(ORB)是一种快速的特征检测和描述子算法,适用于实时应用。ORB结合了FAST关键点检测和BRIEF描述子的优点。

相机标定

内参矩阵

内参矩阵包含了相机的焦距、主点位置等信息。这些参数可以通过相机标定获得。

外参矩阵

外参矩阵描述了相机相对于世界坐标系的位置和姿态。通常通过求解本质矩阵或基础矩阵来估计外参。

立体匹配

基础矩阵(Fundamental Matrix)

基础矩阵连接了两个相机视图中对应点之间的关系。它描述了两个相机视图之间点的几何约束。

本质矩阵(Essential Matrix)

本质矩阵是在两个相机都经过内参矩阵校正后的形式。它仅依赖于两个相机之间的相对旋转和平移。

三角测量

三角测量是从两幅或多幅图像中恢复三维点云的过程。它利用已知的相机参数和匹配的特征点来计算三维坐标。

在这里插入图片描述

使用OpenCV进行三维重建

准备工作

  1. 安装OpenCV:确保安装了最新版本的OpenCV。
  2. 准备图像数据:获取一组从不同角度拍摄的图像。
  3. 安装必要的库:确保安装了NumPy等必要的Python库。

特征检测与匹配

使用OpenCV中的特征检测器,如SIFT、SURF或ORB来检测和匹配特征点。

import cv2
import numpy as np# 读取图像
img1 = cv2.imread('image1.jpg', 0)
img2 = cv2.imread('image2.jpg', 0)# 创建特征检测器
orb = cv2.ORB_create()# 找到关键点和描述子
kp1, des1 = orb.detectAndCompute(img1, None)
kp2, des2 = orb.detectAndCompute(img2, None)# 匹配特征点
bf = cv2.BFMatcher(cv2.NORM_HAMMING, crossCheck=True)
matches = bf.match(des1, des2)# 排序匹配项
matches = sorted(matches, key=lambda x:x.distance)# 绘制匹配
img_matches = cv2.drawMatches(img1, kp1, img2, kp2, matches[:10], None, flags=cv2.DrawMatchesFlags_NOT_DRAW_SINGLE_POINTS)
cv2.imshow('Feature Matches', img_matches)
cv2.waitKey(0)
cv2.destroyAllWindows()

相机标定

使用OpenCV的相机标定工具来估计内参和外参。

# 相机标定
criteria = (cv2.TERM_CRITERIA_EPS + cv2.TERM_CRITERIA_MAX_ITER, 30, 0.001)
objp = np.zeros((6*7,3), np.float32)
objp[:,:2] = np.mgrid[0:7,0:6].T.reshape(-1,2)# 存储标定板角点的世界坐标和图像坐标
objpoints = [] # 在世界坐标系中的3D点
imgpoints = [] # 在图像平面的2D点gray = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
ret, corners = cv2.findChessboardCorners(gray, (7,6), None)if ret == True:objpoints.append(objp)corners2 = cv2.cornerSubPix(gray,corners, (11,11), (-1,-1), criteria)imgpoints.append(corners2)# 标定相机ret, mtx, dist, rvecs, tvecs = cv2.calibrateCamera(objpoints, imgpoints, gray.shape[::-1], None, None)

三角测量

使用匹配的特征点和相机参数来恢复三维点云。

# 三角测量
pts1 = cv2.KeyPoint_convert(kp1)
pts2 = cv2.KeyPoint_convert(kp2)# 使用内参矩阵和外参矩阵
E, _ = cv2.findEssentialMat(pts1, pts2, mtx, method=cv2.RANSAC, prob=0.999, threshold=1.0)
_, R, t, mask = cv2.recoverPose(E, pts1, pts2, mtx)# 三角测量
points4D = cv2.triangulatePoints(mtx @ np.hstack((np.eye(3), np.zeros((3,1)))), mtx @ np.hstack((R, t)), pts1.T, pts2.T)
points3D = cv2.convertPointsFromHomogeneous(points4D.T)

构建三维模型

使用得到的三维点云数据来构建三维模型。

# 将点云保存为PLY文件
ply_header = '''ply
format ascii 1.0
element vertex {}
property float x
property float y
property float z
end_header
'''def write_ply(fn, verts):verts = verts.reshape(-1, 3)with open(fn, 'w') as f:f.write(ply_header.format(len(verts)))np.savetxt(f, verts, '%f %f %f')write_ply('output.ply', points3D)

在这里插入图片描述

进阶技巧

提高重建精度

  • 使用更多的图像:增加图像数量可以提高三维重建的精度。
  • 精细的特征匹配:使用更精确的特征匹配方法,如FLANN匹配器。

加速计算

  • 多线程处理:利用多核CPU进行并行计算。
  • GPU加速:使用CUDA或OpenCL在GPU上运行计算密集型任务。

数据后处理

  • 点云过滤:去除噪声点和异常值。
  • 表面重建:使用泊松表面重建或网格化算法来创建平滑的表面。

结论

三维重建是一项复杂而有趣的技术,OpenCV为我们提供了丰富的工具和函数来实现这一过程。通过上述步骤,我们可以从二维图像中重建出三维模型。未来的研究方向将包括提高重建的准确性、降低计算成本以及探索新的应用领域。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/448557.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

AD9361 在低至 1MHz 的频率下运行

AD9361 在低至 1MHz 的频率下运行 AD -FREQCVT1-EBZ是包含AD9361的FMCOMMS3/4/5板的附加板。虽然完整的芯片级设计包可在此 RF 收发器的ADI产品页面上找到,但有关此卡的信息及其使用方法、围绕它的设计包以及可使其工作的软件可在此处找到。 AD-FREQCVT1-EBZ 模块…

无人机之放电速率篇

无人机的放电速率是指电池在一定时间内放出其储存电能的能力,这一参数对无人机的飞行时间、性能以及安全性都有重要影响。 一、放电速率的表示方法 放电速率通常用C数来表示。C数越大,表示放电速率越快。例如,一个2C的电池可以在1/2小时内放…

储能电源自动化测试系统中不同硬件电路设计对测试结果有哪些影响?-纳米软件

随着能源领域的不断发展,储能电源在各个领域的应用越来越广泛。为了确保储能电源的性能和可靠性,自动化测试系统的重要性日益凸显。其中,硬件电路设计是自动化测试系统的关键组成部分,不同的硬件电路设计会对测试结果产生不同的影…

程序报错:ModuleNotFoundError: No module named ‘code.utils‘; ‘code‘ is not a package

程序报错内容&#xff1a; Traceback (most recent call last): File "code/nli_inference/veracity_prediction.py", line 10, in <module> from code.utils.data_loader import read_json ModuleNotFoundError: No module named code.utils; code is …

Linux运维_Apache更改默认网站目录

1.首先创建目录 并且在目录下新建测试文件 index.html mkdir -p /home/test/ap_web 直接wget 百度官网 wget www.baidu.com 2.编辑配置文件 /etc/apache2/sites-available/000-default.conf(找到 DocumentRoot)更改为刚刚创建的目录 接着在添加 最终文件: 3.给文件 添加属…

面试题:Redis(五)

1. 面试题 面试问 记录对集合中的数据进行统计 在移动应用中&#xff0c;需要统计每天的新增用户数和第2天的留存用户数&#xff1b; 在电商网站的商品评论中&#xff0c;需要统计评论列表中的最新评论&#xff1b; 在签到打卡中&#xff0c;需要统计一个月内连续打卡的用户数&…

【AI大模型】羊驼大模型详解_零基础入门到精通,看完这篇就足够了~

LLaMa系列模型 羊驼模型&#xff08;鼻祖是LLaMa模型&#xff0c;Facebook公司开源模型&#xff09;&#xff1a;即将成为大模型的安卓&#xff0c;国内95%的大模型都是羊驼套壳。GPT系列&#xff08;OpenAI公司&#xff09;&#xff1a;相当于大模型的iOS&#xff08;不开源&…

鸿蒙OS启动流程

启动流程(基于openharmony4.1) 系统上电加载内核后&#xff0c;按照以下流程完成系统各个服务和应用的启动&#xff1a; 内核加载init进程&#xff0c;一般在bootloader启动内核时通过设置内核的cmdline来指定init的位置。init进程启动后&#xff0c;会挂载tmpfs&#xff0c;…

JavaSE——泛型

目录 一、泛型的引入 二、泛型的好处 三、泛型介绍 四、泛型的语法 (一)泛型的声明 (二)泛型的实例化 五、泛型使用的注意事项和细节 六、泛型练习题1 七、自定义泛型 (一)自定义泛型类 (二)自定义泛型接口 (三)自定义泛型方法 八、泛型练习题2 九、泛型的继承和…

moe2024新生赛--pwn篇

moe2024新生赛–pwn篇 也算是复健吧。。 文章目录 moe2024新生赛--pwn篇**1 二进制漏洞审计入门指北**2 NotEnoughTime3 no_more_gets4 leak_sth5 ez_shellcode6 这是什么&#xff1f;libc7 这是什么&#xff1f;shellcode8 这是什么&#xff1f;random9 flag_helper10 这是什么…

PCB缺陷检测数据集 xml 可转yolo格式 ,共10688张图片

PCB缺陷检测数据集&#xff08;yolov5,v7,v8&#xff09; 数据集总共有两个文件夹&#xff0c;一个是pcb整体标注&#xff0c;一个是pcb部分截图。 整体标注有6个分类&#xff0c;开路&#xff0c;短路等都已经标注&#xff0c;标注格式为xml&#xff0c;每个文件夹下有100多张…

bp intruder 四种攻击类型 记录

1. Sniper 攻击&#xff08;狙击手模式&#xff09; 特点&#xff1a; Sniper 攻击是最基础的一种攻击类型&#xff0c;适用于单参数的简单测试。它会逐一替换每一个 payload 插入点&#xff0c;其他位置保持不变&#xff0c;从而测试单个参数对应用的影响。 工作流程&#…

Java-IO流使用场景

Java IO 流是Java编程中非常重要的组成部分,用于处理文件读写、网络通信等数据传输任务。 1. 字节流 1.1 读取文件 import java.io.FileInputStream; import java.io.IOException;public class ReadFileExample {public static void main(String[] args) {try (FileInputSt…

不用搭建服务?MemFire Cloud让开发更简单

不用搭建服务&#xff1f;MemFire Cloud让开发更简单 在当今的开发世界里&#xff0c;想要开发一个功能齐全的应用&#xff0c;往往意味着需要搭建复杂的后端、开发API接口、处理认证授权、管理数据库……这些琐碎的工作让很多开发者头疼不已&#xff0c;尤其是独立开发者或者…

成都睿明智科技有限公司电商服务可靠不?

在这个短视频风起云涌的时代&#xff0c;抖音不仅成为了人们娱乐消遣的首选平台&#xff0c;更是众多商家竞相追逐的电商新蓝海。成都睿明智科技有限公司&#xff0c;作为抖音电商服务领域的佼佼者&#xff0c;正以其独到的洞察力和专业的服务&#xff0c;助力无数品牌在这片沃…

【进阶OpenCV】 (16)-- 人脸识别 -- FisherFaces算法

文章目录 FisherFaces算法一、算法原理二、算法优势与局限三、算法实现1. 图像预处理2. 创建FisherFace人脸特征识别器3. 训练模型4. 测试图像 总结 FisherFaces算法 PCA方法是EigenFaces人脸识别的核心&#xff0c;但是其具有明显的缺点&#xff0c;在操作过程中会损失许多人…

程序员如何使用AI工具进行设计开发?

一、需求分析阶段 自然语言处理辅助理解需求&#xff1a; 使用自然语言处理工具&#xff0c;如 ChatGPT 等&#xff0c;将复杂的业务需求描述转化为更清晰的技术要求。例如&#xff0c;向 AI 解释项目的背景和目标&#xff0c;让它帮助梳理关键需求点和可能的技术挑战。通过与…

Docker下安装RabbitMQ

文章目录 Docker下安装RabbitMQ1. 下载Rabbitmq镜像2. 创建并运行RabbitMQ容器3. 查看启动情况4. 启动RabbitMQ访问的Web客户端4-1 方法一 进入容器开启4-2 方法二 直接开启5. 浏览器访问RabbitMQ的Web客户端页面6. Web客户端页面问题6-1 问题展示6-2 解决方案 Docker下安装Rab…

机器学习笔记-2

文章目录 一、Linear model二、How to represent this function三、Function with unknown parameter四、ReLU总结、A fancy name 一、Linear model 线性模型过于简单&#xff0c;有很大限制&#xff0c;我们需要更多复杂模式 蓝色是线性模型&#xff0c;线性模型无法去表示…

【自然语言处理】Encoder-Decoder模型中Attention机制的引入

在 Encoder-Decoder 模型中引入 Attention 机制&#xff0c;是为了改善基本Seq2Seq模型的性能&#xff0c;特别是当处理长序列时&#xff0c;传统的Encoder-Decoder模型容易面临信息压缩的困难。Attention机制可以帮助模型动态地选择源序列中相关的信息&#xff0c;从而提高翻译…