Atlas800昇腾服务器(型号:3000)—YOLO全系列NPU推理【检测】(五)

服务器配置如下:

CPU/NPU:鲲鹏 CPU(ARM64)+A300I pro推理卡
系统:Kylin V10 SP1【下载链接】【安装链接】
驱动与固件版本版本
Ascend-hdk-310p-npu-driver_23.0.1_linux-aarch64.run【下载链接】
Ascend-hdk-310p-npu-firmware_7.1.0.4.220.run【下载链接】
MCU版本:Ascend-hdk-310p-mcu_23.2.3【下载链接】
CANN开发套件:版本7.0.1【Toolkit下载链接】【Kernels下载链接】

测试om模型环境如下:

Python:版本3.8.11
推理工具:ais_bench
测试YOLO系列:v5/6/7/8/9/10/11

1 基础环境安装

详情见第(三)章环境安装:https://blog.csdn.net/weixin_45679938/article/details/142966255

2 ais_bench编译安装

注意:目前ais_bench工具只支持单个input的带有动态AIPP配置的模型,只支持静态shape、动态batch、动态宽高三种场景,不支持动态shape场景。
参考链接:https://gitee.com/ascend/tools/tree/master/ais-bench_workload/tool/ais_bench

2.1 安装aclruntime包

在安装环境执行如下命令安装aclruntime包:
说明:若为覆盖安装,请增加“–force-reinstall”参数强制安装.

pip3 install -v 'git+https://gitee.com/ascend/tools.git#egg=aclruntime&subdirectory=ais-bench_workload/tool/ais_bench/backend' -i https://pypi.tuna.tsinghua.edu.cn/simple

在这里插入图片描述

2.2 安装ais_bench推理程序包

在安装环境执行如下命令安装ais_bench推理程序包:

 pip3 install -v 'git+https://gitee.com/ascend/tools.git#egg=ais_bench&subdirectory=ais-bench_workload/tool/ais_bench' -i https://pypi.tuna.tsinghua.edu.cn/simple

在这里插入图片描述
卸载和更新【忽略】:

# 卸载aclruntime
pip3 uninstall aclruntime
# 卸载ais_bench推理程序
pip3 uninstall ais_bench

3 裸代码推理测试

# 1.进入运行环境yolo【普通用户】
conda activate yolo
# 2.激活atc【atc --help测试是否可行】
source ~/bashrc

注意:ais_bench调用和使用方式与onnx-runtime几乎一致,因此可参考进行撰写脚本!
新建YOLO_ais_bench_det_aipp.py,内容如下:

import argparse
import time 
import cv2
import numpy as np
import osfrom ais_bench.infer.interface import InferSessionclass YOLO:"""YOLO object detection model class for handling inference"""def __init__(self, om_model, imgsz=(640, 640), device_id=0, model_ndtype=np.single, mode="static", postprocess_type="v8", aipp=False):"""Initialization.Args:om_model (str): Path to the om model."""# 构建ais_bench推理引擎self.session = InferSession(device_id=device_id, model_path=om_model)# Numpy dtype: support both FP32(np.single) and FP16(np.half) om modelself.ndtype = model_ndtypeself.mode = modeself.postprocess_type = postprocess_typeself.aipp = aipp  self.model_height, self.model_width = imgsz[0], imgsz[1]  # 图像resize大小def __call__(self, im0, conf_threshold=0.4, iou_threshold=0.45):"""The whole pipeline: pre-process -> inference -> post-process.Args:im0 (Numpy.ndarray): original input image.conf_threshold (float): confidence threshold for filtering predictions.iou_threshold (float): iou threshold for NMS.Returns:boxes (List): list of bounding boxes."""# 前处理Pre-processt1 = time.time()im, ratio, (pad_w, pad_h) = self.preprocess(im0)pre_time = round(time.time() - t1, 3)# 推理 inferencet2 = time.time()preds = self.session.infer([im], mode=self.mode)[0]  # mode有动态"dymshape"和静态"static"等det_time = round(time.time() - t2, 3)# 后处理Post-processt3 = time.time()if self.postprocess_type == "v5":boxes = self.postprocess_v5(preds,im0=im0,ratio=ratio,pad_w=pad_w,pad_h=pad_h,conf_threshold=conf_threshold,iou_threshold=iou_threshold,)elif self.postprocess_type == "v8":boxes = self.postprocess_v8(preds,im0=im0,ratio=ratio,pad_w=pad_w,pad_h=pad_h,conf_threshold=conf_threshold,iou_threshold=iou_threshold,)elif self.postprocess_type == "v10":boxes = self.postprocess_v10(preds,im0=im0,ratio=ratio,pad_w=pad_w,pad_h=pad_h,conf_threshold=conf_threshold)else:boxes = []post_time = round(time.time() - t3, 3)return boxes, (pre_time, det_time, post_time)# 前处理,包括:resize, pad, 其中HWC to CHW,BGR to RGB,归一化,增加维度CHW -> BCHW可选择是否开启AIPP加速处理def preprocess(self, img):"""Pre-processes the input image.Args:img (Numpy.ndarray): image about to be processed.Returns:img_process (Numpy.ndarray): image preprocessed for inference.ratio (tuple): width, height ratios in letterbox.pad_w (float): width padding in letterbox.pad_h (float): height padding in letterbox."""# Resize and pad input image using letterbox() (Borrowed from Ultralytics)shape = img.shape[:2]  # original image shapenew_shape = (self.model_height, self.model_width)r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])ratio = r, rnew_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))pad_w, pad_h = (new_shape[1] - new_unpad[0]) / 2, (new_shape[0] - new_unpad[1]) / 2  # wh paddingif shape[::-1] != new_unpad:  # resizeimg = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)top, bottom = int(round(pad_h - 0.1)), int(round(pad_h + 0.1))left, right = int(round(pad_w - 0.1)), int(round(pad_w + 0.1))img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))  # 填充# 是否开启aipp加速预处理,需atc中完成if self.aipp:return img, ratio, (pad_w, pad_h)# Transforms: HWC to CHW -> BGR to RGB -> div(255) -> contiguous -> add axis(optional)img = np.ascontiguousarray(np.einsum('HWC->CHW', img)[::-1], dtype=self.ndtype) / 255.0img_process = img[None] if len(img.shape) == 3 else imgreturn img_process, ratio, (pad_w, pad_h)# YOLOv5/6/7通用后处理,包括:阈值过滤与NMSdef postprocess_v5(self, preds, im0, ratio, pad_w, pad_h, conf_threshold, iou_threshold):"""Post-process the prediction.Args:preds (Numpy.ndarray): predictions come from ort.session.run().im0 (Numpy.ndarray): [h, w, c] original input image.ratio (tuple): width, height ratios in letterbox.pad_w (float): width padding in letterbox.pad_h (float): height padding in letterbox.conf_threshold (float): conf threshold.iou_threshold (float): iou threshold.Returns:boxes (List): list of bounding boxes."""# (Batch_size, Num_anchors, xywh_score_conf_cls), v5和v6的[..., 4]是置信度分数,v8v9采用类别里面最大的概率作为置信度scorex = preds  # outputs: predictions (1, 8400*3, 85)# Predictions filtering by conf-thresholdx = x[x[..., 4] > conf_threshold]# Create a new matrix which merge these(box, score, cls) into one# For more details about `numpy.c_()`: https://numpy.org/doc/1.26/reference/generated/numpy.c_.htmlx = np.c_[x[..., :4], x[..., 4], np.argmax(x[..., 5:], axis=-1)]# NMS filtering# 经过NMS后的值, np.array([[x, y, w, h, conf, cls], ...]), shape=(-1, 4 + 1 + 1)x = x[cv2.dnn.NMSBoxes(x[:, :4], x[:, 4], conf_threshold, iou_threshold)]# 重新缩放边界框,为画图做准备if len(x) > 0:# Bounding boxes format change: cxcywh -> xyxyx[..., [0, 1]] -= x[..., [2, 3]] / 2x[..., [2, 3]] += x[..., [0, 1]]# Rescales bounding boxes from model shape(model_height, model_width) to the shape of original imagex[..., :4] -= [pad_w, pad_h, pad_w, pad_h]x[..., :4] /= min(ratio)# Bounding boxes boundary clampx[..., [0, 2]] = x[:, [0, 2]].clip(0, im0.shape[1])x[..., [1, 3]] = x[:, [1, 3]].clip(0, im0.shape[0])return x[..., :6]  # boxeselse:return []# YOLOv8/9/11通用后处理,包括:阈值过滤与NMSdef postprocess_v8(self, preds, im0, ratio, pad_w, pad_h, conf_threshold, iou_threshold):"""Post-process the prediction.Args:preds (Numpy.ndarray): predictions come from ort.session.run().im0 (Numpy.ndarray): [h, w, c] original input image.ratio (tuple): width, height ratios in letterbox.pad_w (float): width padding in letterbox.pad_h (float): height padding in letterbox.conf_threshold (float): conf threshold.iou_threshold (float): iou threshold.Returns:boxes (List): list of bounding boxes."""x = preds  # outputs: predictions (1, 84, 8400)# Transpose the first output: (Batch_size, xywh_conf_cls, Num_anchors) -> (Batch_size, Num_anchors, xywh_conf_cls)x = np.einsum('bcn->bnc', x)  # (1, 8400, 84)# Predictions filtering by conf-thresholdx = x[np.amax(x[..., 4:], axis=-1) > conf_threshold]# Create a new matrix which merge these(box, score, cls) into one# For more details about `numpy.c_()`: https://numpy.org/doc/1.26/reference/generated/numpy.c_.htmlx = np.c_[x[..., :4], np.amax(x[..., 4:], axis=-1), np.argmax(x[..., 4:], axis=-1)]# NMS filtering# 经过NMS后的值, np.array([[x, y, w, h, conf, cls], ...]), shape=(-1, 4 + 1 + 1)x = x[cv2.dnn.NMSBoxes(x[:, :4], x[:, 4], conf_threshold, iou_threshold)]# 重新缩放边界框,为画图做准备if len(x) > 0:# Bounding boxes format change: cxcywh -> xyxyx[..., [0, 1]] -= x[..., [2, 3]] / 2x[..., [2, 3]] += x[..., [0, 1]]# Rescales bounding boxes from model shape(model_height, model_width) to the shape of original imagex[..., :4] -= [pad_w, pad_h, pad_w, pad_h]x[..., :4] /= min(ratio)# Bounding boxes boundary clampx[..., [0, 2]] = x[:, [0, 2]].clip(0, im0.shape[1])x[..., [1, 3]] = x[:, [1, 3]].clip(0, im0.shape[0])return x[..., :6]  # boxeselse:return []# YOLOv10后处理,包括:阈值过滤-无NMSdef postprocess_v10(self, preds, im0, ratio, pad_w, pad_h, conf_threshold):x = preds  # outputs: predictions (1, 300, 6) -> (xyxy_conf_cls)# Predictions filtering by conf-thresholdx = x[x[..., 4] > conf_threshold]# 重新缩放边界框,为画图做准备if len(x) > 0:# Rescales bounding boxes from model shape(model_height, model_width) to the shape of original imagex[..., :4] -= [pad_w, pad_h, pad_w, pad_h]x[..., :4] /= min(ratio)# Bounding boxes boundary clampx[..., [0, 2]] = x[:, [0, 2]].clip(0, im0.shape[1])x[..., [1, 3]] = x[:, [1, 3]].clip(0, im0.shape[0])return x  # boxeselse:return []if __name__ == '__main__':# Create an argument parser to handle command-line argumentsparser = argparse.ArgumentParser()parser.add_argument('--det_model', type=str, default=r"yolov8s.om", help='Path to OM model')parser.add_argument('--source', type=str, default=r'images', help='Path to input image')parser.add_argument('--out_path', type=str, default=r'results', help='结果保存文件夹')parser.add_argument('--imgsz_det', type=tuple, default=(640, 640), help='Image input size')parser.add_argument('--classes', type=list, default=['person', 'bicycle', 'car', 'motorcycle', 'airplane', 'bus', 'train', 'truck', 'boat', 'traffic light','fire hydrant', 'stop sign', 'parking meter', 'bench', 'bird', 'cat', 'dog', 'horse', 'sheep', 'cow','elephant', 'bear', 'zebra', 'giraffe', 'backpack', 'umbrella', 'handbag', 'tie', 'suitcase', 'frisbee','skis', 'snowboard', 'sports ball', 'kite', 'baseball bat', 'baseball glove', 'skateboard', 'surfboard','tennis racket', 'bottle', 'wine glass', 'cup', 'fork', 'knife', 'spoon', 'bowl', 'banana', 'apple', 'sandwich','orange', 'broccoli', 'carrot', 'hot dog', 'pizza', 'donut', 'cake', 'chair', 'couch', 'potted plant', 'bed','dining table', 'toilet', 'tv', 'laptop', 'mouse', 'remote', 'keyboard', 'cell phone', 'microwave', 'oven','toaster', 'sink', 'refrigerator', 'book', 'clock', 'vase', 'scissors', 'teddy bear', 'hair drier', 'toothbrush'], help='类别')parser.add_argument('--conf', type=float, default=0.25, help='Confidence threshold')parser.add_argument('--iou', type=float, default=0.6, help='NMS IoU threshold')parser.add_argument('--device_id', type=int, default=0, help='device id')parser.add_argument('--mode', default='static', help='om是动态dymshape或静态static')parser.add_argument('--model_ndtype', default=np.single, help='om是fp32或fp16')parser.add_argument('--postprocess_type', type=str, default='v8', help='后处理方式, 对应v5/v8/v10三种后处理')parser.add_argument('--aipp', default=False, action='store_true', help='是否开启aipp加速YOLO预处理, 需atc中完成om集成')args = parser.parse_args()# 创建结果保存文件夹if not os.path.exists(args.out_path):os.mkdir(args.out_path)print('开始运行:')# Build modeldet_model = YOLO(args.det_model, args.imgsz_det, args.device_id, args.model_ndtype, args.mode, args.postprocess_type, args.aipp)color_palette = np.random.uniform(0, 255, size=(len(args.classes), 3))  # 为每个类别生成调色板for i, img_name in enumerate(os.listdir(args.source)):try:t1 = time.time()# Read image by OpenCVimg = cv2.imread(os.path.join(args.source, img_name))# 检测Inferenceboxes, (pre_time, det_time, post_time) = det_model(img, conf_threshold=args.conf, iou_threshold=args.iou)print('{}/{} ==>总耗时间: {:.3f}s, 其中, 预处理: {:.3f}s, 推理: {:.3f}s, 后处理: {:.3f}s, 识别{}个目标'.format(i+1, len(os.listdir(args.source)), time.time() - t1, pre_time, det_time, post_time, len(boxes)))# Draw rectanglesfor (*box, conf, cls_) in boxes:cv2.rectangle(img, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])),color_palette[int(cls_)], 2, cv2.LINE_AA)cv2.putText(img, f'{args.classes[int(cls_)]}: {conf:.3f}', (int(box[0]), int(box[1] - 9)),cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 0, 255), 2, cv2.LINE_AA)cv2.imwrite(os.path.join(args.out_path, img_name), img)except Exception as e:print(e)     

检测结果可视化如下,效果与GPU上推理几乎一致:
在这里插入图片描述

4 推理耗时

YOLO各系列推理耗时(640*640)如下:
YOLOv5s:8-9ms
YOLOv7-tiny:7-8ms
YOLOv7:14ms
YOLOv8s:6ms
YOLOv9s:12ms
YOLOv10s:6ms
YOLOv11s:8ms
预处理耗时(bus.jpg):12ms
后处理耗时:除YOLOv10几乎无耗时外,其余1-2ms。
注意,上述耗时未使用AIPP进行前处理加速,如YOLOv8s加速后前处理+推理大约6-7ms。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/452039.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

YOLOv11模型改进-注意力机制-引入自适应稀疏自注意力ASSA

随着目标检测领域的快速发展,YOLO系列模型凭借其端到端、高效的检测性能逐渐成为工业界和学术界的标杆。然而,如何进一步优化YOLOv11的特征提取能力,减少冗余信息并提升模型对复杂场景的适应性,仍是一个值得深入探讨的问题。为此&…

Atlas800昇腾服务器(型号:3000)—驱动与固件安装(一)

服务器配置如下: CPU/NPU:鲲鹏 CPU(ARM64)A300I pro推理卡 系统:Kylin V10 SP1【下载链接】【安装链接】 驱动与固件版本版本: Ascend-hdk-310p-npu-driver_23.0.1_linux-aarch64.run【下载链接】 Ascend-…

scrapy 爬虫学习之【中医药材】爬虫

本项目纯学习使用。 1 scrapy 代码 爬取逻辑非常简单,根据url来处理翻页,然后获取到详情页面的链接,再去爬取详情页面的内容即可,最终数据落地到excel中。 经测试,总计获取 11299条中医药材数据。 import pandas as…

特斯拉Robotaxi发布会2024:自动驾驶未来的开端

引言 2024年10月,特斯拉在洛杉矶举行了一场引发全球科技界高度关注的发布会,主题为“We Robot”。这场发布会展示了特斯拉的最新自动驾驶技术,包括无人驾驶出租车Cybercab和无人驾驶厢式货车Robovan,并且还展示了人形机器人Optim…

Java项目-基于springboot框架的社区疫情防控平台系统项目实战(附源码+文档)

作者:计算机学长阿伟 开发技术:SpringBoot、SSM、Vue、MySQL、ElementUI等,“文末源码”。 开发运行环境 开发语言:Java数据库:MySQL技术:SpringBoot、Vue、Mybaits Plus、ELementUI工具:IDEA/…

精选的四款强大视频压缩工具的整理:

大家好!今天我来跟大家分享一下我使用过的几款视频压缩软件的体验感受,以及它们各自的好用之处;在这个信息爆炸的时代,视频文件越来越大,如何快速有效地压缩视频,同时还能保持较好的画质,是很多…

大模型~合集14

我自己的原文哦~ https://blog.51cto.com/whaosoft/12286799 # Attention as an RNN Bengio等人新作:注意力可被视为RNN,新模型媲美Transformer,但超级省内 , 既能像 Transformer 一样并行训练,推理时内存需求又不随 token 数线性…

基于DNA算法的遥感图像加解密matlab仿真

目录 1.程序功能描述 2.测试软件版本以及运行结果展示 3.核心程序 4.本算法原理 5.完整程序 1.程序功能描述 通过DNA算法对遥感图像进行加密和解密,分析加解密处理后图像的直方图,相关性,熵,解密后图像质量等。 2.测试软件版…

MongoDB安装配置及配置和启动服务

MongoDB 安装配置 附:MongoDB官网下载地址: https://www.mongodb.com/download-center/community 注: 官网可以下载最新版的MongoDB安装包,有MSI安装版和ZIP安装版。我们课堂上使用4.4.4的ZIP安装版。安装版参考博客&#xff1…

jmeter中对于有中文内容的csv文件怎么保存

jmeter的功能很强大,但是细节处没把握好就得不到预期的结果。今天来讲讲有中文内容的csv文件的参数化使用中需要注意的事项。 对于有中文内容,涉及到编码格式,为了让jmeter能正确地读取csv文件中的中文,需要把文件转码为UTF-8BOM…

【服务器部署】Docker部署小程序

一、下载Docker 安装之前,一定查看是否安装docker,如果有,卸载老版本 我是虚拟机装的Centos7,linux 3.10 内核,docker官方说至少3.8以上,建议3.10以上(ubuntu下要linux内核3.8以上&#xff0c…

(JAVA)贪心算法、加权有向图与求得最短路径的基本论述与实现

1. 贪心算法 1.1 贪心算法的概述: 贪心算法是一种对某些求最优解问题的更简单、更迅速的设计技术。 贪心算法的特点是一步一步地进行,常以当前情况为基础根据某个优化测度作最优选择,而不考虑各种可能的整体情况,省去了为找最优…

LeetCode-3192 使二进制数组全部等于1的最少操作次数Ⅱ

今天的每日一题就是昨天的延伸,预判成功。 LeetCode-3191 使二进制数组全部等于1的最少操作次数-CSDN博客文章浏览阅读115次。如果数组第一个元素就是0,那么第一个元素是肯定要翻转的,而我们只有从索引0的位置开始翻转才可以翻转到第一个元素…

生成模型初认识

生成模型初认识 参考学习资料:李宏毅-机器学习 以下为课程过程中的简易笔记 生成模型 为什么要用生成模型?——创造力:同一个输入,产生不同的输出(distribution),有一定概率发生某种随机事件…

【天池比赛】【零基础入门金融风控 Task2赛题理解】【2.3.6】

【天池比赛】【零基础入门金融风控 Task2赛题理解】【2.3.1-2.3.5】 2.3.6 变量分布可视化 2.3.6.1 单一变量分布可视化 对于 pandas.core.series.Series 类型的变量: index:含义:它表示 Series 对象的索引,也就是每个数据点对…

MySQL-15.DQL-排序查询

一.DQL-排序查询 -- 排序查询 -- 1.根据入职时间,对员工进行升序排序 select * from tb_emp order by entrydate asc ;-- 2.根据入职时间,对员工进行降序排序 select * from tb_emp order by entrydate desc ;-- 3.根据 入职时间 对公司员工进行 升序排序…

人工神经网络(Artificial Neural Networks,简称ANNs)-激活函数-5

建议在阅读本文之前先了解神经网络。 在构建神经网络的过程中,您需要做出的选择之一是在隐藏层和网络的输出层使用什么是激活函数。本文讨论了神经网络中的激活函数。 目录 ​​​​​​​ 什么是激活函数?神经网络的元素为什么我们需要非线性激活函数?激活函数的变体 …

质因数分解

#include <stdio.h>int main() {long long x;while (scanf("%lld", &x) ! EOF) { // 读取输入直到文件结束if (x 0) break; // 如果输入为0则退出循环for (long long i 2; i * i < x; i) {while (x % i 0) { // 当x能被i整除时printf("%lld &q…

Leetcode 组合总和

这个Java代码实现的是LeetCode上的“组合总和”&#xff08;Combination Sum&#xff09;问题&#xff0c;采用的是回溯算法&#xff08;Backtracking&#xff09;。下面是详细的算法思想解释&#xff1a; 算法思想&#xff1a; 回溯算法的基本思路&#xff1a; 回溯算法是一种…

考研前所学的c语言01(2024/10/15)

1.变量由字母数字下划线组成&#xff0c;但是首字母只能是字母和下划线 2.基本函数01 3.基本代码02&#xff08;符号常量&#xff09; 4. A 是字符常量&#xff08;character constant&#xff09;。它表示单个字符&#xff0c;并且它的类型是 char&#xff0c;一个字节 "…