Redis的6.0以上为啥又支持多线程

Redis 在 6.0 版本之前一直采用单线程架构,这是因为 Redis 主要是内存操作,单线程模型足以应对大部分高性能场景。而单线程模型的优势在于避免了多线程带来的上下文切换和锁的开销,使得 Redis 保持极高的性能和简单性。

然而,随着 Redis 被广泛应用于更复杂的场景,尤其是在处理网络 I/O 密集型任务时,单线程的局限性逐渐显现。为了更好地应对这些情况,Redis 从 6.0 版本开始引入了多线程支持,但主要用于优化特定操作。具体原因如下:

1. 网络 I/O 和 CPU 密集型任务的分离

Redis 的性能瓶颈通常不是 CPU,而是网络 I/O 的处理。例如,处理大量连接、发送和接收大量数据包时,单线程需要同步处理每个连接的 I/O 操作,这会影响整体的吞吐量。引入多线程后,Redis 可以在多线程中处理 I/O 操作,如接受客户端请求、解析数据和发送响应,而保持数据操作仍然是单线程处理,这避免了复杂的并发控制。

2. 提高网络性能

Redis 6.0 的多线程模式将网络 I/O部分分摊给多个线程执行,这样多个客户端的 I/O 操作可以并行处理,减少了请求排队等待时间,提高了在高并发场景下的响应能力。

3. 保持数据一致性的简单性

尽管 Redis 6.0 引入了多线程,但它仍然保持数据操作(如读写数据)的单线程模型。这样可以避免复杂的多线程并发问题和锁机制带来的性能损耗。通过这种设计,Redis 既能提升 I/O 处理能力,又不会影响核心数据的简单性和一致性。

4. 提升大数据量处理的效率

对于大批量数据的序列化和反序列化操作(如 AOF 日志写入和 RDB 快照生成),多线程可以显著提高效率。这些操作在单线程下可能会拖慢 Redis 的性能,而多线程则可以让这些任务并发执行,减少阻塞。

小结

Redis 6.0 引入多线程是为了优化网络 I/O批量数据处理的性能,而核心的数据操作依然保持单线程模型,以确保简单性和一致性。这种设计在不引入多线程锁复杂性的情况下,极大提升了高并发场景下的性能。

在引入多线程后,如何解决并发带来的线程安全问题呢

在 Redis 6.0 引入多线程后,为了解决并发带来的线程安全问题,采用了以下几种策略和设计原则:

1. 数据操作仍然是单线程

  • Redis 的核心数据操作(如读写数据)仍然是在单线程中进行的。这意味着所有对数据的修改(如 SETGETDELETE 等操作)依然是串行化处理的。这样可以保证数据的一致性和完整性,避免并发修改导致的数据竞争和不一致问题。

2. I/O 多线程处理

  • Redis 6.0 中的多线程主要用于处理网络 I/O,而不是数据操作。这意味着多个线程可以并行处理客户端的请求、接收和发送数据,从而提升网络处理能力。I/O 操作和数据操作是分开的,这样在 I/O 线程中发生的操作不会影响到数据的一致性。

3. 使用锁和原子操作

  • 对于需要共享数据的场景,Redis 使用了简单的锁机制来保护关键区域,确保在某个时刻只有一个线程能够访问特定资源。此外,Redis 内部使用的很多操作(如增量计数器)都是原子操作,能够在并发环境中保证操作的安全性。
  • 原子操作示例
    Redis 中使用的原子操作,通常通过操作系统提供的底层原子函数实现。在 C 语言中,可以使用 __sync_fetch_and_add 等 GCC 内置函数来实现原子加法。例如:
// 原子加法示例
#include <stdio.h>volatile int counter = 0;void increment_counter() {// 使用 GCC 内置的原子加法__sync_fetch_and_add(&counter, 1);
}int main() {increment_counter();printf("Counter: %d\n", counter);return 0;
}

在上述代码中,__sync_fetch_and_add 函数可以确保在多线程环境中对 counter 的增量操作是原子的。

锁的实现

Redis 使用自旋锁来保护临界区。以下是一个简单的自旋锁的实现示例:

typedef struct {volatile int locked; // 锁状态
} spinlock_t;void spinlock_init(spinlock_t *lock) {lock->locked = 0; // 初始化为未锁定
}void spinlock_lock(spinlock_t *lock) {while (__sync_lock_test_and_set(&lock->locked, 1)) {// 自旋等待}
}void spinlock_unlock(spinlock_t *lock) {__sync_lock_release(&lock->locked);
}

在这个自旋锁的实现中,spinlock_lock 使用 __sync_lock_test_and_set 来获取锁并保证原子性。

4. 细粒度锁

  • 在某些情况下,Redis 可以使用细粒度锁(例如,针对特定数据结构的锁)来实现更高效的并发控制。这种方式相比于全局锁能够提高并发性能,因为它允许多个线程同时操作不同的资源。
  • 细粒度锁允许多个线程并行访问不同的资源,以下是细粒度锁的伪代码示例:
// 细粒度锁结构
typedef struct {spinlock_t lock; // 细粒度锁// 资源
} resource_t;// 访问资源的函数
void access_resource(resource_t *res) {spinlock_lock(&res->lock); // 获取细粒度锁// 处理资源spinlock_unlock(&res->lock); // 释放细粒度锁
}

在这个示例中,每个资源都有一个细粒度锁,允许不同的线程同时访问不同的资源而不会互相影响。

5. 无锁设计

  • Redis 中的一些数据结构(如字典、列表等)采用了无锁设计,使用原子操作来保证数据的一致性。这种设计能避免使用传统的锁机制,从而提高性能。
  • 无锁设计通常依赖于原子操作,允许多个线程在不使用传统锁的情况下安全地访问共享资源。以下是一个无锁队列的简化示例:
typedef struct {int *buffer;volatile int head;volatile int tail;int capacity;
} lock_free_queue;// 入队操作
int enqueue(lock_free_queue *queue, int value) {int tail = queue->tail;int next_tail = (tail + 1) % queue->capacity;if (next_tail == queue->head) {// 队列满return -1;}queue->buffer[tail] = value;__sync_fetch_and_add(&queue->tail, 1); // 原子更新尾部return 0;
}// 出队操作
int dequeue(lock_free_queue *queue, int *value) {int head = queue->head;if (head == queue->tail) {// 队列空return -1;}*value = queue->buffer[head];__sync_fetch_and_add(&queue->head, 1); // 原子更新头部return 0;
}

在这个无锁队列的实现中,enqueue 和 dequeue 操作使用原子操作来更新头和尾的索引,而不需要传统的锁机制。这样可以减少线程间的争用,提高性能。

6. 复制和分区

  • Redis 的集群架构通过数据分区和复制来扩展性能和可用性。每个分片可以在单独的线程中处理请求,分担整体的负载,且数据一致性通过主从复制机制得到保障。

总结

引入多线程后的 Redis 6.0 通过将数据操作保持在单线程中、使用锁和原子操作、细粒度锁、无锁设计等多种方式来解决并发带来的线程安全问题。这种设计既能提升性能,又能保证数据的一致性和安全性。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/455324.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【深入学习Redis丨第八篇】详解Redis数据持久化机制

前言 Redis支持两种数据持久化方式&#xff1a;RDB方式和AOF方式。前者会根据配置的规则定时将内存中的数据持久化到硬盘上&#xff0c;后者则是在每次执行写命令之后将命令记录下来。两种持久化方式可以单独使用&#xff0c;但是通常会将两者结合使用。 一、持久化 1.1、什么…

【Android】使用 Compose 自定义 View 实现从 0 ~ 1 仿 EChat 柱状图

目录 前言DrawScopeDrawScope Api 绘制柱状图绘制 X 轴绘制 Y 轴绘制柱状背景绘制柱状前景完整代码最终效果 存在的问题 前言 本文讲的是使用 compose 去自定义 View &#xff0c;如果您未曾通过继承 View 的方式去实现自定义 View&#xff0c;那么&#xff0c;我建议在观看本…

监控-08-skywalking监控告警

文章目录 前言一、准备二、配置skywalking2.1 修改alarm-settings.yml2.2 重启skywalking 三、收到告警邮件总结 前言 skywalking根据监控规则&#xff0c;通过webhook调后端微服务接口&#xff0c;从而发送告警邮件。 一、准备 根据上几章内容&#xff0c;保证skywalking能监…

离散数学实验二c语言(输出关系矩阵,输出矩阵性质,输出自反闭包,对称闭包,传递闭包,判断矩阵是否为等价关系,相容关系,偏序关系)

离散数学实验二 一、算法描述&#xff0c;算法思想 &#xff08;一&#xff09;相关数据结构 typedef struct Set *S; //存放集合 struct Set {int size; //集合的元素个数char *A; //存放该集合的元素 }; Set存放有限集合A&#xff0c;该集合的元素个数为size&#xff0…

Kafka-Windows搭建全流程(环境,安装包,编译,消费案例,远程连接,服务自启,可视化工具)

目录 一. Kafka安装包获取 1. 官网地址 2. 百度网盘链接 二. 环境要求 1. Java 运行环境 (1) 对 java 环境变量进行配置 (2) 下载完毕之后进行解压 三. 启动Zookeeper 四. 启动Kafka (1) 修改Conf下的server.properties文件&#xff0c;修改kafka的日志文件路径 (2)…

海外云手机实现高效的海外社交媒体营销

随着全球化的深入发展&#xff0c;越来越多的中国企业走向国际市场&#xff0c;尤其是B2B外贸企业&#xff0c;海外社交媒体营销已成为其扩大市场的重要手段。在复杂多变的海外市场环境中&#xff0c;如何有效提高营销效率并降低运营风险&#xff0c;成为了众多企业的首要任务。…

无人机悬停精度算法!

一、主要算法类型 PID控制算法&#xff1a; PID控制算法是一种常用的闭环控制算法&#xff0c;通过计算目标值与当前值的误差&#xff0c;并根据比例&#xff08;P&#xff09;、积分&#xff08;I&#xff09;、微分&#xff08;D&#xff09;三个参数来调整控制输出&#x…

SQL高级查询03

SQL查询语句的下载脚本链接&#xff01;&#xff01;&#xff01; 【免费】SQL练习资源-具体练习操作可以查看我发布的文章资源-CSDN文库​编辑https://download.csdn.net/download/Z0412_J0103/89908378https://download.csdn.net/download/Z0412_J0103/89908378 1 查询employ…

聚链成网,趣链科技参与 “跨链创新联合体”建设

近日&#xff0c;2024全球数商大会在上海举办。大会由上海数据集团和上海市数商协会联合主办&#xff0c;上海市数据局和浦东新区人民政府支持&#xff0c;以“数联全球&#xff0c;商通未来——‘链’接数字经济新未来”为主题&#xff0c;聚焦区块链技术和应用场景展开。 会上…

PostGis空间(下):空间连接与空间索引

目录 1、简介2、空间连接3、空间索引3.1 索引操作3.2 空间索引的工作原理3.2.1 R-Tree 3.3 空间索引函数3.4 仅索引查询3.5 ANALYZE3.6 VACUUMing3.7 函数列表 PS 1024到啦&#xff01;&#xff01;&#xff01; 先祝各位程序员或者想成为程序员正在奋斗中的伙伴1024程序员节快…

JavaScript进阶:手写代码挑战(二)

​&#x1f308;个人主页&#xff1a;前端青山 &#x1f525;系列专栏&#xff1a;JavaScript篇 &#x1f516;人终将被年少不可得之物困其一生 依旧青山,本期给大家带来JavaScript篇专栏内容:JavaScript手写代码篇 在现代Web开发中&#xff0c;JavaScript 是不可或缺的编程语言…

Linux系统基础-进程间通信(5)_模拟实现命名管道和共享内存

个人主页&#xff1a;C忠实粉丝 欢迎 点赞&#x1f44d; 收藏✨ 留言✉ 加关注&#x1f493;本文由 C忠实粉丝 原创 Linux系统基础-进程间通信(5)_模拟实现命名管道和共享内存 收录于专栏[Linux学习] 本专栏旨在分享学习Linux的一点学习笔记&#xff0c;欢迎大家在评论区交流讨…

Mac 使用 zsh 终端提示 zsh: killed 的问题

我的脚本的内容为&#xff1a; #!/bin/bashset -epids$(ps -ef | grep consul | grep -v grep | awk {print $2})for pid in $pids; doecho "kill process: $pid"kill -9 $pid donecd $(dirname $0)nohup ./consul agent -dev > nohup.log &可以看到这是一个…

阿里云项目启动OOM问题解决

问题描述 随着项目业务的增长&#xff0c;系统启动时内存紧张&#xff0c;每次第一次启动的时候就会出现oom第二次或者第n的时候&#xff0c;就启动成功了。 带着这个疑问&#xff0c;我就在阿里云上提交了工单&#xff0c;咨询为什么第一次提交失败但是后面却能提交成功尼&a…

Matlab学习01-矩阵

目录 一&#xff0c;矩阵的创建 1&#xff0c;直接输入法创建矩阵 2&#xff0c;利用M文件创建矩阵 3&#xff0c;利用其它文本编辑器创建矩阵 二&#xff0c;矩阵的拼接 1&#xff0c;基本拼接 1&#xff09; 水平方向的拼接 2&#xff09;垂直方向的拼接 3&#xf…

shell脚本-函数

文章目录 一、函数介绍什么是函数、为什么使用函数、如何使用函数 二、shell脚本中如何定义函数Way1Way2Way3 三、shell脚本中如何调用函数四、shell脚本中使用内置变量(1、#、?、2等等)五、函数的返回值、shell脚本中函数的返回值函数的返回值概念shell脚本中函数的返回值ret…

梦金园三闯港交所上市:年营收200亿元,靠加盟模式取胜

近日&#xff0c;梦金园黄金珠宝集团股份有限公司&#xff08;以下简称“梦金园”&#xff09;向港交所递交IPO申请&#xff0c;中信证券为其独家保荐人。贝多财经了解到&#xff0c;这已经是梦金园第三次向港股发起冲击&#xff0c;此前曾于2023年9月、2024年4月两度递表。 继…

刷题 - 图论

1 | bfs/dfs | 网格染色 200. 岛屿数量 访问到马上就染色&#xff08;将visited标为 true)auto [cur_x, cur_y] que.front(); 结构化绑定&#xff08;C17&#xff09;也可以不使用 visited数组&#xff0c;直接修改原始数组时间复杂度: O(n * m)&#xff0c;最多将 visited 数…

Deepinteraction 深度交互:通过模态交互的3D对象检测

一.前提 为什么要采用跨模态的信息融合? 点云在低分辨率下提供必要的定位和几何信息&#xff0c;而图像在高分辨率下提供丰富的外观信息。 -->因此必须采用跨模态的信息融合 提出的原因? 传统的融合办法可能会由于信息融合到统一表示中的不太完美而丢失很大一部分特定…

磁珠的工作原理:【图文讲解】

1&#xff1a;什么是磁珠 磁珠是一种被动组件&#xff0c;用来抑制电路中的高频噪声。磁珠是一种特别的扼流圈&#xff0c;其成分多半为铁氧体&#xff0c;利用其高频电流产生的热耗散来抑制高频噪声。磁珠有时也称为磁环、EMI滤波器、铁芯等。 磁珠是滤波常用的器件&#xf…