提升数据处理效率:TDengine S3 的最佳实践与应用

在当今数据驱动的时代,如何高效地存储与处理海量数据成为了企业面临的一大挑战。为了解决这一问题,我们在 TDengine 3.2.2.0 首次发布了企业级功能 S3 存储。这一功能经历多个版本的迭代与完善后,逐渐发展成为一个全面和高效的解决方案。

S3 存储功能的引入,让 TDengine 不仅能够在本地存储数据,还能将数据无缝地备份到云端,极大地提升了数据的可靠性与安全性。本文将深入探讨 TDengine 的 S3 存储功能,包括其优点、如何进行配置与使用,以及数据的写入和读取原理,帮助读者全面了解这一强大的工具如何助力企业在数据管理方面实现更高的效率和灵活性。

什么是 S3 ?

S3 是一种可扩展且高可用的分布式存储解决方案,专门用于存储大量的非结构化数据对象。通过使用对象名(键值)进行索引,用户可以方便地访问和管理这些数据对象。这种架构使得 S3 能够灵活应对不断增长的数据存储需求,提供可靠的数据存储服务。

需要注意的是,S3 上的对象一旦上传后便无法修改,且在读取对象时的速度通常较本地磁盘要慢。此外,各大云服务供应商通常会根据上传数据的大小、读取次数和读取的数据量来收取费用,这使得用户在使用 S3 存储时需要考虑成本管理。

TDengine S3 的使用场景主要包括冷数据查询和写入需求较低的情况。在许多企业中,冷数据虽然不常被访问,但仍然作为重要的数据资产存在,因此不能被彻底删除。这类数据通常具有较低的实时性需求,但仍需保持可用性,以便在需要时进行检索和分析。

此外,企业在数据存储上往往对成本十分敏感,希望能够降低本地磁盘的占用率。借助 TDengine S3,企业可以将冷数据转移到云端存储,从而释放本地存储资源。在必要时,企业仍能够方便地访问这些冷数据,确保在特定场景下能够进行有效的数据利用。

整体来说,TDengine S3 主要有以下三大优点:

  1. 显著降低存储成本:S3 提供了低廉的存储成本,企业在将数据上传至 S3 之前,可以通过重新整理数据来提升压缩比,从而有效减少存储空间的占用。这种方式不仅降低了整体的存储成本,还优化了数据的存储效率。

  2. 支持冷数据的写入、更新与删除,行为透明:TDengine S3 允许对冷数据进行灵活的写入、更新和删除操作,且这些操作对用户来说是透明的。在数据上传时,系统将数据拆分为多个对象进行存储,只有最后一个对象会保留在本地。使用 AppendOnly 机制,所有更新都会在最后一个对象上进行,从而确保数据的一致性和完整性。

  3. 查询速度影响较小,行为透明:存储在 S3 上的数据查询速度仅下降约一倍。TDengine 的存储模型设计确保同一表的数据相邻存放,这意味着每次查询只需读取少量的数据,同时预计算的数据仍保留在本地,有助于提升查询效率并降低延迟。

TDengine S3 数据写入、读写原理分析

数据写入原理

  • 数据压缩与整理(Compact)

在数据上传至 S3 之前,TDengine会对每个表的数据进行压缩与整理,确保相同表的数据相邻存放。这种方法不仅减少了查询时的数据读取次数,还显著提高了查询性能。相邻存放的数据可以减少磁盘寻址时间,使得查询过程更加高效,提升整体数据访问速度。

  • 仅上传最大的 data 文件

TDengine 采用了“仅上传最大的 data 文件”的策略。在写入数据时,data 文件使用追加模式(append-only),而其他文件会因随机写入而产生频繁的更新。这种设计确保在查询时,访问的是相对静态且频繁使用的数据文件,从而提升查询性能并减少 I/O 开销。

  • 数据文件的分块与透明写入

数据文件被拆分为多个固定大小的磁盘块,并且最后一个磁盘块保留在本地存储。这种设计使得写入行为对用户保持全透明,用户可以在任何时刻写入任意时间范围的数据而无需担心底层存储的复杂性。这种灵活性为用户提供了极大的便利,有助于满足不同场景下的数据写入需求。

  • 定期上传机制

TDengine 设定了定期上传的机制,只有在满足一定时间阈值且数据在一段时间内未发生变化后,数据才会被上传至 S3。这种策略不仅确保了历史数据的有效导入,还提高了上传的效率,避免了不必要的频繁上传操作,从而减少了对网络带宽的占用。

数据读取原理

在 TDengine 中,数据读取的过程是通过查询引擎与 TSDB(时间序列数据库)读取模块的紧密协作来实现的。当用户发起查询请求时,查询引擎首先通过 TSDB Reader 模块访问与数据相关的多个文件,包括 header、data 和 stt 等文件。这些文件中包含了所需数据的索引信息和实际数据,从而为数据检索提供了基础。

接下来,TSDB File Reader 根据请求的页编码(pgno)来定位和访问相关的文件页(file page)。页编码是指数据在磁盘上存储的逻辑位置,能够帮助系统快速找到所需的数据块。这一机制确保了查询的高效性,避免了不必要的全表扫描,提升了数据访问的速度。

如果请求的数据文件页尚未被缓存到本地,系统将从 S3 读取该文件页及其附近的文件页。这种预取策略不仅提高了读取效率,还减少了从云端获取数据时的延迟。通过将所需的数据块提前加载到本地缓存中,TDengine 能够显著提升后续查询的响应速度,确保用户在进行数据分析时能够快速获取所需的信息。

通过以上机制,TDengine S3 实现了高效的数据管理、存储以及读取,确保用户在处理大规模时序数据时能够享受到快速且稳定的性能。

配置及使用

想要在 TDengine 中配置 S3 存储,首先需要在每个 dnode 的配置文件中设置相关的 S3 访问参数。以下是示例配置:

  • s3EndPoint: 指定 S3 的访问端点,例如 http://cos.ap-beijing.myqcloud.com

  • s3AccessKey: 提供访问密钥,例如 AKIDsQmwsfKxTo2A6nGVXZN0UlofKn6JRRSJ:lIdoy99ygEacU7iHfogaN2Xq0yumSm1E

  • s3BucketName: 设置使用的 S3 桶名称,例如 test0711-1309024725

在创建数据库时,可以指定数据在本地的保存时间,例如:

CREATE DATABASE demo_db duration 1d s3_keeplocal 3d;

在这个示例中,duration参数设置了数据的保留时长,而s3_keeplocal参数则指定了数据在本地存储的天数。合理规划该参数有助于根据本地磁盘的容量进行有效管理。

关键参数说明如下:

  • s3_keeplocal: 代表数据在本地保留的天数,用户应根据本地磁盘的大小合理设置该参数。

  • s3_compact: 指定首次上传至 S3 时是否自动进行数据压缩(compact)。如果数据已经定期进行了自动整理,则无需开启此参数。

  • s3MigrateEnabled: 表示是否自动进行 S3 迁移。在导入历史数据时,关闭此参数通常会获得更好的效果。

通过正确配置这些参数,用户能够优化 TDengine 与 S3 的集成,确保数据的高效存储和访问。

结语

通过深入探讨 TDengine 与 S3 存储的集成,我们可以看到这一创新设计在大数据管理中的巨大潜力。TDengine 不仅提供高效的写入和查询性能,还通过灵活的存储选项和透明的操作方式,帮助企业有效管理海量数据。无论是在冷数据存储、数据压缩,还是在优化查询性能方面,TDengine S3 都展现出了其独特的优势。

随着数据量的不断增长,企业面临着越来越多的挑战,而 TDengine S3 的灵活性和高效性无疑为这些挑战提供了解决方案。希望本文所分享的配置方法、使用场景以及最佳实践,能够帮助读者更深入地理解和高效利用 TDengine S3,推动企业在数据管理上实现更大的成功。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/456915.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

vue计算属性报错:Computed property “energyTotal“ was assigned to but it has no setter.

我页面中的应用 <el-input-number v-model"energyTotal" placeholder"请输入" disabled class"" :precision"2" :max"100000000" :controls"false"></el-input-number>computed:{carbonTotal(){/*…

ubuntu20.04上使用 Verdaccio 搭建 npm 私有仓库

安装nvm 首先安装必要的工具&#xff1a; apt update apt install curl下载并执行nvm安装脚本&#xff1a; curl -o- https://raw.githubusercontent.com/nvm-sh/nvm/v0.39.7/install.sh | bash添加环境变量&#xff08;如果安装脚本没有自动添加&#xff09;。编辑 ~/.bash…

Python爬虫教程:从入门到精通

Python爬虫教程&#xff1a;从入门到精通 前言 在信息爆炸的时代&#xff0c;数据是最宝贵的资源之一。Python作为一种简洁而强大的编程语言&#xff0c;因其丰富的库和框架&#xff0c;成为了数据爬取的首选工具。本文将带您深入了解Python爬虫的基本概念、实用技巧以及应用…

【Qt聊天室客户端】聊天界面功能

1. 发送消息 1.1 实现逻辑分析 发送消息的具体实现&#xff0c;通过输入框右下角的发送按钮输入框中发送的内容&#xff0c;通过网络传输给服务器客户端&#xff0c;发送消息成功后&#xff0c;消息展示区中要显示刚刚发送出去的消息 1.2 具体实现 消息输入区域设置信号槽处…

Cout输出应用举例

Cout输出应用 在main.cpp里输入程序如下&#xff1a; #include <iostream> //使能cin(),cout(); #include <stdlib.h> //使能exit(); #include <sstream> #include <iomanip> //使能setbase(),setfill(),setw(),setprecision(),setiosflags()和res…

Unity2D 人物爬楼梯

unity3d 中 实现 2d角色爬梯子功能。_哔哩哔哩_bilibiliunity3d 中 实现 2d角色爬梯子功能。, 视频播放量 2598、弹幕量 3、点赞数 28、投硬币枚数 18、收藏人数 83、转发人数 19, 视频作者 Fss1975, 作者简介 &#xff0c;相关视频&#xff1a;寻路算法 在unity3d 中的演示&am…

05方差分析续

文章目录 1.Three way ANOVA2.Latin square design2.Hierarchical (nested) ANOVA3.Split-plot ANOVA4.Repeated measures ANOVA5.Mixed effect models 1.Three way ANOVA 三因素相关分析 单因子分析的代码 data(mtcars) nrow(mtcars) # 32 mtcars$cyl as.factor(mtcars$cyl…

【永中软件-注册/登录安全分析报告】

前言 由于网站注册入口容易被黑客攻击&#xff0c;存在如下安全问题&#xff1a; 暴力破解密码&#xff0c;造成用户信息泄露短信盗刷的安全问题&#xff0c;影响业务及导致用户投诉带来经济损失&#xff0c;尤其是后付费客户&#xff0c;风险巨大&#xff0c;造成亏损无底洞…

spring整合使用xml方式整合Druid数据源连接池

1.普通的JDBC数据库连接使用 DriverManager 来获取&#xff0c;每次向数据库建立连接的时候都要将 Connection加载到内存中&#xff0c;再验证用户名和密码(得花费0.05s&#xff5e;1s的时间)。需要数据库连接的时候&#xff0c;就向数据库要求 一个&#xff0c;执行完成后再断…

【微服务】Java 对接飞书多维表格使用详解

目录 一、前言 二、前置操作 2.1 开通企业飞书账户 2.2 确保账户具备多维表操作权限 2.3 创建一张测试用的多维表 2.4 获取飞书开放平台文档 2.5 获取Java SDK 三、应用App相关操作 3.1 创建应用过程 3.2 应用发布过程 3.3 应用添加操作权限 四、多维表应用授权操作…

语音识别——使用Vosk进行语音识别

文章目录 前言一、Vosk模型1.准备好所需要的语音包2.下载使用 二、使用示例1.文件读取示例2.结合麦克风演示 总结 前言 如何编译Vosk请参照之前的文章&#xff0c;ubuntu编译kaldi和vosk Vosk是语音识别开源框架&#xff0c;支持二十种语言 - 中文&#xff0c;英语&#xff0…

使用Prometheus对微服务性能自定义指标监控

背景 随着云计算和容器化技术的不断发展&#xff0c;微服务架构逐渐成为现代软件开发的主流趋势。微服务架构将大型应用程序拆分成多个小型、独立的服务&#xff0c;每个服务都可以独立开发、部署和扩展。这种架构模式提高了系统的可伸缩性、灵活性和可靠性&#xff0c;但同时…

大数据-190 Elasticsearch - ELK 日志分析实战 - 配置启动 Filebeat Logstash

点一下关注吧&#xff01;&#xff01;&#xff01;非常感谢&#xff01;&#xff01;持续更新&#xff01;&#xff01;&#xff01; 目前已经更新到了&#xff1a; Hadoop&#xff08;已更完&#xff09;HDFS&#xff08;已更完&#xff09;MapReduce&#xff08;已更完&am…

语音语言模型最新综述! 关于GPT-4o背后技术的尝试

近期,大型语言模型(LLMs)在生成文本和执行各种自然语言处理任务方面展现出了卓越的能力,成为了强大的AI驱动语言理解和生成的基础模型。然而&#xff0c;仅依赖于基于文本模态的模型存在显著局限性。这促使了基于语音的生成模型的发展,使其能够更自然、直观地与人类互动。 为了…

任务看板是什么?如何选择合适的任务看板工具?

一、任务看板是什么&#xff1f; 任务看板是一种可视化的项目管理工具&#xff0c;它通常以板状的形式呈现&#xff0c;将任务以卡片的形式展示在不同的列中&#xff0c;每一列代表任务的不同状态。例如&#xff0c;待办事项、进行中、已完成等。任务看板能够帮助团队成员清晰…

Linux: network: wireshark IO图的一个问题

今天遇到一个问题&#xff0c;发现wireshark画的IO图&#xff0c;前几秒没有数据&#xff0c;但是根据Raw的pcap看&#xff0c;是有包的&#xff0c;这就迷惑了。 经同事提醒&#xff0c;这个IO在设置了多个画图filter的时候&#xff0c;可能导致开始前几秒没有输出。如下图 这…

LLM | 论文精读 | 基于大型语言模型的自主代理综述

论文标题&#xff1a;A Survey on Large Language Model based Autonomous Agents 作者&#xff1a;Lei Wang, Chen Ma, Xueyang Feng, 等 期刊&#xff1a;Frontiers of Computer Science, 2024 DOI&#xff1a;10.1007/s11704-024-40231-1 一、引言 自主代理&#xff08;…

找不到包的老版本???scikit-learn,numpy,scipy等等!!

废话不多说 直接上链接了&#xff1a; https://pypi.tuna.tsinghua.edu.cn/simple/https://pypi.tuna.tsinghua.edu.cn/simple/https://pypi.tuna.tsinghua.edu.cn/simple/xxx/ 后面的这个xxx就是包的名字 大家需要什么包的版本&#xff0c;直接输进去就可以啦 举个栗子&#…

关于Docker的docker engine stopped问题解决

问题图: 主要检查这两块 启用或关闭Windows功能如下图&#xff08;将没开启的开启特别是Hyper-V&#xff0c;Linux&#xff0c;虚拟机等&#xff09;&#xff1a; 然后打开任务管理器搜索Docker service将关闭状态打开 运行管理员CMD执行如下命令 重启&#xff01;&#xff01…

ClickHouse在百度MEG数据中台的落地和优化

导读 百度MEG上一代大数据产品存在平台分散、质量不均和易用性差等问题&#xff0c;导致开发效率低下、学习成本高&#xff0c;业务需求响应迟缓。为了解决这些问题&#xff0c;百度MEG内部开发了图灵3.0生态系统&#xff0c;包括Turing Data Engine(TDE)计算引擎、Turing Dat…