比例数据可视化(Python实现板块层级图绘制)——Instacart Market Basket Analysis

【实验名称】

实验一:绘制板块层级图

【实验目的】

1. 掌握数据文件读取

2. 掌握数据处理的方法

3. 实现板块层级图的绘制

 【数据介绍】Instacart Market Basket Analysis

1. 数据说明
      数据共有300 0000orders,
      20 0000users,
      5000products, 
      每个user提供有4-100个orders
2. 各数据内容了解
   aisles:产品摆放位置说明
   order_products__prior:订单产品关联表
   orders.csv: 用户下单记录表。    
   products.csv: 产品ID分类,及其摆放位置的关系表
   departments.csv:  产品分类表
3. 目标分析
   目标是预测用户下次购买时,可能再次购买的产品。
   即,用户历史购买的产品,那些是用户下次购买还会购买的。
4. 训练数据构建
   order_id, product_id(订单中的一个产品), lable(是否下次购买)。
  (1)产品特征
      1)产品被购买次数。
      2)产品被重复购买次数
      3)产品被重复购买次数/总的购买次数。
      4)产品在不同week被购买次数
      5)产品在不同hour被购买次数。
  (2)用户特征
      1)用户总下单次数。
      2)用户总购买量。
      3)用户每单平均购买量。
      4)用户距离上一次购物时间。
      5)用户频繁购买是周几。
      6)用户购买当天小时。
      7)用户购买商品数(去重)
      8)用户购买最多的商品
      7)用户购买最少的商品。
      9)用户在不同week购买最多,以及最少的商品。
      10)用户在不同hour购买最多,以及最少的商品。
  (3)user_products特征
      1)该用户购买该商品次数/该用户下单次数。
      2)该用户上一次购买该商品距离现在天数。
      3)该用户上一次购买该商品平均week日期。
      4)该用户上一次购买该商品平均时间。
      5)该用户购买该商品的频率

 Instacart 的数据科学团队在提供这种令人愉悦的购物体验方面发挥着重要作用。目前,他们使用交易数据来开发模型,以预测用户在会话期间会再次购买、首次尝试或下次添加到购物车的产品。

无论您是从精心策划的购物清单中购物,还是让奇思妙想引导您放牧,我们独特的美食仪式都定义了我们是谁。Instacart 是一款杂货订购和送货应用程序,旨在让您在需要时轻松地将您个人最喜欢的和主食装满您的冰箱和食品储藏室。通过 Instacart 应用程序选择产品后,个人购物者会查看您的订单并为您进行店内购物和送货。

Instacart 的数据科学团队在提供这种令人愉悦的购物体验方面发挥着重要作用。目前,他们使用交易数据来开发模型,以预测用户在会话期间会再次购买、首次尝试或下次添加到购物车的产品。最近,Instacart 开源了这些数据 - 请参阅他们的博客文章 300 万个 Instacart 订单。

 【实验原理】

板块层级图(treemap)是一种基于面积的可视化方式,通过每一个板块(通常为矩形)的尺寸大小进行度量。外部矩形代表父类别,而内部矩形代表子类别。我们也可以通过板块层级图简单的呈现比例关系,不过它更擅于呈现树状结构的数据。

读取绘图所用的数据,并对数据进行处理将数据处理成我们可以使用的形式,绘制板块层级图,设置标签和标题。

【实验环境】

Windows 11,python3.11.1,pycharm professional 2024.2.1,jupyter notebook

【实验步骤】

题目一:安装pandas、matplotlib、seaborn、squarify

1、输入命令:pip install pandas

2、输入命令:pip install matplotlib

3、输入命令:pip install seaborn

  1. 输入命令:pip install squarify

题目二:读取数据

在这里我们使用pandas库中的read_csv函数来读取这3个数据文件。

import pandas as pdproducts_df = pd.read_csv('products.csv')
aisles_df = pd.read_csv('aisles.csv')
departments_df = pd.read_csv('departments.csv')
aisles_df.head(10)

数据读取的结果(aisles_df部分数据读取结果):

题目三:数据预处理

我们需要根据源表对目标表进行匹配查询,使用merge函数进行操作。

order_products_prior_df = pd.merge(products_df, aisles_df, on='aisle_id', how='left')
order_products_prior_df = pd.merge(order_products_prior_df, departments_df, on='department_id', how='left')
order_products_prior_df.head()
temp = order_products_prior_df[['product_name', 'aisle', 'department']]
temp = pd.concat([order_products_prior_df.groupby('department')['product_name'].nunique().rename('products_department'),order_products_prior_df.groupby('department')['aisle'].nunique().rename('aisle_department')
], axis=1).reset_index()
temp = temp.set_index('department')
temp2 = temp.sort_values(by="aisle_department", ascending=False)

进行匹配操作后的数据。

print(temp)

print(temp2)

 

题目四:绘制板块层级图

1.绘制初始的板块层级图

cmap = matplotlib.cm.viridis
mini, maxi = temp2.products_department.min(), temp2.products_department.max()
norm = matplotlib.colors.Normalize(vmin=mini, vmax=maxi)
colors = [cmap(norm(value)) for value in temp2.products_department]
colors[1] = "#FBFCFE"
labels = ["%s\n%d aisle num\n%d products num" % (label) for label inzip(temp2.index, temp2.aisle_department, temp2.products_department)]
fig = plt.figure(figsize=(12, 10))
ax = fig.add_subplot(111, aspect="equal")
ax = squarify.plot(temp2.aisle_department, color=colors, label=labels, ax=ax, alpha=.7)

绘制结果

2.设置xy轴的属性

ax.set_xticks([])
ax.set_yticks([])

3.添加图表标题

fig.suptitle("How are aisles organized within departments", fontsize=20 )

4.添加数据标签

img = plt.imshow([temp2.products_department], cmap=cmap)
img.set_visible(False)
fig.colorbar(img, orientation="vertical", shrink=.96)
fig.text(.76, .9, "numbers of products", fontsize=14)

这样我们的板块层级图就绘制完毕了

附录:总代码

import pandas as pd # data processing, CSV file I/O (e.g. pd.read_csv)
import matplotlib.pyplot as plt
import seaborn as sns
import matplotlib
import squarify
color = sns.color_palette()
pd.options.mode.chained_assignment = None # default='warn'
products_df = pd.read_csv('products.csv')
aisles_df = pd.read_csv('aisles.csv')
departments_df = pd.read_csv('departments.csv')
order_products_prior_df = pd.merge(products_df, aisles_df, on='aisle_id', how='left')
order_products_prior_df = pd.merge(order_products_prior_df, departments_df, on='department_id', how='left')
order_products_prior_df.head()
temp = order_products_prior_df[['product_name', 'aisle', 'department']]
temp = pd.concat([order_products_prior_df.groupby('department')['product_name'].nunique().rename('products_department'),order_products_prior_df.groupby('department')['aisle'].nunique().rename('aisle_department')
], axis=1).reset_index()
temp = temp.set_index('department')
temp2 = temp.sort_values(by="aisle_department", ascending=False)
print(temp)
print(temp2)
x = 0
y = 0
width = 100
height = 100
cmap = matplotlib.cm.viridis
mini, maxi = temp2.products_department.min(), temp2.products_department.max()
norm = matplotlib.colors.Normalize(vmin=mini, vmax=maxi)
colors = [cmap(norm(value)) for value in temp2.products_department]
colors[1] = "#FBFCFE"
labels = ["%s\n%d aisle num\n%d products num" % (label) for label inzip(temp2.index, temp2.aisle_department, temp2.products_department)]
fig = plt.figure(figsize=(12, 10))
ax = fig.add_subplot(111, aspect="equal")
ax = squarify.plot(temp2.aisle_department, color=colors, label=labels, ax=ax, alpha=.7)
fig.suptitle("How are aisles organized within departments", fontsize=20 )
ax.set_xticks([])
ax.set_yticks([])
img = plt.imshow([temp2.products_department], cmap=cmap)
img.set_visible(False)
fig.colorbar(img, orientation="vertical", shrink=.96)
fig.text(.76, .9, "numbers of products", fontsize=14)
plt.show()

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/457155.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

logback日志脱敏后异步写入文件

大家项目中肯定都会用到日志打印,目的是为了以后线上排查问题方便,但是有些企业对输出的日志包含的敏感(比如:用户身份证号,银行卡号,手机号等)信息要进行脱敏处理。 哎!我们最近就遇到了日志脱敏的改造。可…

使用text-embedding-3-small生成向量并将向量插入Mlivus Cloud用于语义搜索的深度解析与实战操作

使用text-embedding-3-small生成向量并将向量插入Mlivus Cloud用于语义搜索的深度解析与实战操作 在当今的大数据时代,文本数据的处理与分析显得尤为重要。如何高效地存储、查询和理解这些海量文本数据,成为了许多企业和研究机构面临的重大挑战。幸运的是,随着向量数据库技…

校园表白墙源码修复版

此校园表白墙源码基于thinkphp,因为时代久远有不少bug,经本人修复已去除大部分bug,添加了美化元素。 https://pan.quark.cn/s/1f9b3564c84b https://pan.baidu.com/s/1bb9vu9VV2jJoo9-GF6W3xw?pwd7293 https://caiyun.139.com/m/i?2hoTc…

用更多的钱买电脑而不是手机

如果,我们对自己的定义是知识工作者,那么在工作、学习相关的电子设备投入上,真的别舍不得花钱。 需要留意的是,手机,对于大部分在电脑前工作的人,不是工作设备。在我看来,每年投入到电脑的钱&…

【Java】java 集合框架(详解)

📃个人主页:island1314 ⛺️ 欢迎关注:👍点赞 👂🏽留言 😍收藏 💞 💞 💞 1. 概述 🚀 🔥 Java集合框架 提供了一系列用于存储和操作…

GeoWebCache1.26调用ArcGIS切片

常用网址: GeoServer GeoWebCache (osgeo.org) GeoServer 用户手册 — GeoServer 2.20.x 用户手册 一、版本需要适配:Geoserver与GeoWebCache、jdk等的版本适配对照 ​ 查看来源 二、准备工作 1、数据:Arcgis标准的切片,通过…

前OpenAI首席技术官为新AI初创公司筹资;我国发布首个应用临床眼科大模型 “伏羲慧眼”|AI日报

文章推荐 2024人工智能报告.zip |一文迅速了解今年的AI界都发生了什么? 今日热点 据报道,前OpenAI首席技术官Mira Murati正在为一家新的AI初创公司筹集资金 据路透社报道,上个月宣布离职的OpenAI首席技术官Mira Murati正在为一…

2024年妈杯MathorCup大数据竞赛A题超详细解题思路

2024年妈杯大数据竞赛初赛整体难度约为0.6个国赛。A题为台风中心路径相关问题,为评价预测问题;B题为库存和销量的预测优化问题。B题难度稍大于A题,可以根据自己队伍情况进行选择。26日早六点之前发布AB两题相关解题代码论文。 下面为大家带来…

excel斜线表头

检验数据验证对象 鼠标放在检验数据 验证对象中间,altenter 之后空格 选中格子,右键单元格格式, 完成 如果是需要多分割,操作一样,在画斜线的时候会有区别,在插入里面用直线画斜线即可 在表格插入的时…

el-table相关的功能实现

1. 表格嵌套表格时&#xff0c;隐藏父表格的全选框 场景&#xff1a;当table表格设置复选&#xff08;多选&#xff09;功能时&#xff0c;如何隐藏表头的复选框&#xff0c;不让用户一键多选。 <el-table :header-cell-class-name"cellClass">// 表头复选框禁…

基于Springboot无人驾驶车辆路径规划系统(源码+定制+开发)

博主介绍&#xff1a; ✌我是阿龙&#xff0c;一名专注于Java技术领域的程序员&#xff0c;全网拥有10W粉丝。作为CSDN特邀作者、博客专家、新星计划导师&#xff0c;我在计算机毕业设计开发方面积累了丰富的经验。同时&#xff0c;我也是掘金、华为云、阿里云、InfoQ等平台…

雷赛L6N伺服驱动器基本参数设置——EtherCAT 总线型

1、指令脉冲设置 PA0.08代表电机转一圈&#xff0c;所需要的指令脉冲数&#xff0c;该值驱动器默认值为0&#xff0c;该值更改后断电重启后生效。 2、编码器反馈脉冲设置 PA0.11&#xff0c;代表编码器输出每转脉冲数&#xff0c;实际反馈的脉冲数做了4倍频处理&#xff0c;设…

CSS揭秘:7. 伪随机背景

前置知识&#xff1a;CSS 渐变&#xff0c;5. 条纹背景&#xff0c;6. 复杂的背景图案 前言 本篇主要内容依然是关于背景的&#xff0c;无限平铺的背景会显得整齐美观&#xff0c;但又有些呆板&#xff0c;如何实现背景的多样性和随机性&#xff0c;是本篇的核心。 一、四种颜…

LTSC版本的Windows系统没有默认图片查看工具和便笺?教你下载。

前言 最近小白在使用Windows 11 LTSC版本&#xff0c;感觉真的是嘎嘎好用。 终于等到了&#xff01;旧电脑福星——最干净的Win11官方原版系统 小白用来安装这个系统的电脑配置其实也不低&#xff1a; i5-12400&#xff08;核显输出&#xff09; 16GB DDR4 3200MHz 500GB …

植物健康,Spring Boot来助力

3系统分析 3.1可行性分析 通过对本植物健康系统实行的目的初步调查和分析&#xff0c;提出可行性方案并对其一一进行论证。我们在这里主要从技术可行性、经济可行性、操作可行性等方面进行分析。 3.1.1技术可行性 本植物健康系统采用SSM框架&#xff0c;JAVA作为开发语言&#…

【c++篇】:从基础到实践--c++内存管理技巧与模版编程基础

✨感谢您阅读本篇文章&#xff0c;文章内容是个人学习笔记的整理&#xff0c;如果哪里有误的话还请您指正噢✨ ✨个人主页&#xff1a;余辉zmh–CSDN博客 ✨ 文章所属专栏&#xff1a;c篇–CSDN博客 文章目录 前言一.c/c内存分布二.c/c的动态内存管理方式2.1.c语言的动态内存管…

Rust初踩坑

一、下载 到官网https://www.rust-lang.org/zh-CN/tools/install下载你需要的版本 二、安装 执行rustup-init 文件&#xff0c;选择1 按提示直到安装完成 可以通过以下命令测试&#xff1a; rustc -V # 注意的大写的 V cargo -V # 注意的大写的 V三、在VScode中…

Linux--epoll(ET)实现Reactor模式

Linux–多路转接之epoll Reactor反应堆模式 Reactor反应堆模式是一种事件驱动的设计模式&#xff0c;通常用于处理高并发的I/O操作&#xff0c;尤其是在服务器或网络编程中。 基本概念 Reactor模式又称之为响应器模式&#xff0c;基于事件多路复用机制&#xff0c;使得单个…

UDP(用户数据报协议)端口监控

随着网络的扩展&#xff0c;确保高效的设备通信对于优化网络功能变得越来越重要。在这个过程中&#xff0c;端口发挥着重要作用&#xff0c;它是实现外部设备集成的物理连接器。通过实现数据的无缝传输和交互&#xff0c;端口为网络基础设施的顺畅运行提供了保障。端口使数据通…

vuex使用modules模块化

1、main.js引入 //引入vuex import store from ./store new Vue({el: #app,router,store,components: { App },template: <App/>,data:function(){return{wbWinList: [] // 定义的变量&#xff0c;全局参数}}, })2、index.js import Vue from vue; import Vuex from …