SMA-BP时序预测 | Matlab实现SMA-BP黏菌算法优化BP神经网络时间序列预测

SMA-BP时序预测 | Matlab实现SMA-BP黏菌算法优化BP神经网络时间序列预测

目录

    • SMA-BP时序预测 | Matlab实现SMA-BP黏菌算法优化BP神经网络时间序列预测
      • 预测效果
      • 基本介绍
      • 程序设计
      • 参考资料

预测效果

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述
在这里插入图片描述
在这里插入图片描述

基本介绍

1.Matlab实现SMA-BP黏菌算法优化BP神经网络时间序列预测(完整源码和数据);
2.数据集为excel,单列时间序列数据集,运行主程序main.m即可,其余为函数文件,无需运行;
3.优化参数为神经网络的权值和偏置,命令窗口输出RMSE、MAPE、MAE、R2等评价指标;
4.运行环境Matlab2018b及以上;
5.代码特点:参数化编程、参数可方便更改、代码编程思路清晰、注释明细。

程序设计

  • 完整源码和数据获取方式资源出下载Matlab实现SMA-BP黏菌算法优化BP神经网络时间序列预测 。
%%  清空环境变量
warning off             % 关闭报警信息
close all               % 关闭开启的图窗
clear                   % 清空变量
clc                     % 清空命令行%%  导入数据(时间序列的单列数据)
result = xlsread('data.xlsx');%%  数据分析
num_samples = length(result);  % 样本个数 
kim = 4;                      % 延时步长(kim个历史数据作为自变量)
zim =  1;                      % 跨zim个时间点进行预测%%  划分数据集
for i = 1: num_samples - kim - zim + 1res(i, :) = [reshape(result(i: i + kim - 1), 1, kim), result(i + kim + zim - 1)];
end%% 数据集分析
outdim = 1;                                  % 最后一列为输出
num_size = 0.7;                              % 训练集占数据集比例
num_train_s = round(num_size * num_samples); % 训练集样本个数
f_ = size(res, 2) - outdim;                  % 输入特征维度%%  划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%%  数据归一化
[p_train, ps_input] = mapminmax(P_train,0,1);
p_test = mapminmax('apply',P_test,ps_input);[t_train, ps_output] = mapminmax(T_train,0,1);
t_test = mapminmax('apply',T_test,ps_output);%% 节点个数
inputnum  = size(p_train, 1); % 输入层节点数
hiddennum = 15;                % 隐藏层节点数
outputnum = size(t_train, 1); % 输出层节点数
% CSDN 机器学习之心

参考资料

[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/457714.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【C#】调用本机AI大模型流式返回

【python】AI Navigator的使用及搭建本机大模型_anaconda ai navigator-CSDN博客 【Python】AI Navigator对话流式输出_python ai流式返回-CSDN博客 前两章节我们讲解了使用AI Navigator软件搭建本机大模型,并使用python对大模型api进行调用,使其流式返…

JS面试八股文(一)

😊JS面试八股文(一) 1.JS由哪三部分组成?2.JS有哪些内置对象?3.操作数组的方法有哪些?4.JS对数据类型的检测方式有哪些?5.说一下闭包,闭包有什么特点?6.前端的内存泄漏怎…

【go】仅设想,能不能通过pure go编写页面。

设想 通过pure-go编写页面, 似乎不太好实现, 就当学习前端html基础了。 完成度 0.5% App.go: package srcimport (d "github.com/go-webtools/wgo/core/document""github.com/go-webtools/wgo/core/react""github.com/go-webtools/wgo/c…

Java避坑案例 - 高并发场景下的分布式缓存策略

文章目录 概述缓存常见问题及解决方案把 Redis 当作数据库常用的数据淘汰策略如何选择合适的驱逐算法 缓存雪崩问题复现解决方案 缓存击穿(热点缓存失效)问题复现解决方案 缓存穿透问题复现解决方案缓存穿透 vs 缓存击穿 缓存与数据库的一致性先更新缓存…

面包种类图像分割系统:多层面改进

面包种类图像分割系统源码&数据集分享 [yolov8-seg-GhostHGNetV2&yolov8-seg-C2f-DCNV3等50全套改进创新点发刊_一键训练教程_Web前端展示] 1.研究背景与意义 项目参考ILSVRC ImageNet Large Scale Visual Recognition Challenge 项目来源AAAI Globa…

使用Llama Index与Streamlit实现一个从文本中提取专业术语和定义网页小程序

Llama Index有许多用例(语义搜索、摘要等),并且都有很好的记录。然而,这并不意味着我们不能将Llama Index应用到非常具体的用例中! 在本教程中,我们将介绍使用Llama Index从文本中提取专业术语和定义的设计…

Ovis: 多模态大语言模型的结构化嵌入对齐

论文题目:Ovis: Structural Embedding Alignment for Multimodal Large Language Model 论文地址:https://arxiv.org/pdf/2405.20797 github地址:https://github.com/AIDC-AI/Ovis/?tabreadme-ov-file 今天,我将分享一项重要的研…

量子机器学习:颠覆性的前沿技术

量子机器学习:颠覆性的前沿技术 引言 在科技日新月异的今天,量子计算和机器学习作为两大前沿领域,各自在推动科技进步中发挥着重要作用。而当这两者结合时,便诞生了一个全新的领域——量子机器学习(Quantum Machine …

GCC 简介

Linux 中的编译器 GCC 的编译原理和使用详解 GCC 简介 GCC(GNU Compiler Collection)是一套由 GNU 开发的编程语言编译器,它支持多种编程语言,包括 C、C、Objective-C、Fortran、Ada 和 Go 等。GCC 是一个开源的工具集&#xff…

Spring Boot框架在学生宿舍管理中的应用研究

摘要 随着信息技术在管理上越来越深入而广泛的应用,管理信息系统的实施在技术上已逐步成熟。本文介绍了学生宿舍信息管理系统的开发全过程。通过分析学生宿舍信息管理系统管理的不足,创建了一个计算机管理学生宿舍信息管理系统的方案。文章介绍了学生宿舍…

AI读教链《为什么今年ETH对BTC表现这么拉垮?》

以太坊(ETH)近期表现不佳,主要是由于市场对其价值存储功能的信心下降,尤其是在比特币(BTC)表现强劲的背景下。ETH的市值逐渐被以Solana等新兴公链抢占,流失了大量用户和炒币的流量。此外&#x…

JAVA排序

排序的概念 排序:所谓排序,就是使一串记录,按照其中的某个或某些关键字的大小,递增或递减的排列起来的操作。 稳定性:假定在待排序的记录序列中,存在多个具有相同的关键字的记录,若经过排序&…

跟着鸟儿学飞行?扑翼机器人的感知秘籍

大家好!今天来了解一篇扑翼机器人的研究——《Avian-inspired embodied perception in biohybrid flapping-wing robotics》发表于《Nature Communications》。在广阔天空中,鸟类凭借精妙翅膀结构与敏锐感知自由翱翔,这一直吸引着科学家探索其…

cherry pick commit

cherry pick commit git cherry-pick 是一个 Git 命令,用于将特定的提交(commit)应用到当前分支上。这在需要从其他分支中挑选某些提交到当前分支时非常有用,例如当你需要修复一个 bug,但想只应用特定的变更&#xff…

国内大语言模型哪家更好用?

大家好,我是袁庭新。 过去一年,AI大语言模型在爆发式增长,呈现百家争鸣之态。国内外相关厂商积极布局,并相继推出自家研发的智能化产品。 我在工作中已习惯借助AI来辅助完成些编码、创作、文生图等任务,甚至对它们产…

基于物联网的智慧考场系统设计(论文+源码)

1. 功能设计 (1)温度监测与控制功能: 系统需要能够实时采集考场内的温度信息,通过DS18B20传感器获取准确的数据,并在OLED屏幕和APP上显示。当温度异常过高时,系统应自动启动继电器,模拟空调开启…

【Python】深入理解Python的列表推导式与生成器表达式:简洁与性能的权衡

引言 Python因其简洁易懂的语法和强大的标准库,深受开发者的喜爱。为了提升代码的简洁性与可读性,Python引入了许多方便的语法特性,其中列表推导式和生成器表达式是非常重要的工具。这两者为我们提供了优雅的方式来生成序列数据,…

API接口开放与安全管控 - 原理与实践

API安全是接口开放的前提条件 在API对外开放时,确保其安全性至关重要,因为API直接暴露给外部环境,容易成为攻击目标。一旦被恶意利用,可能导致数据泄露、服务滥用等严重后果。因此,通过API网关实施严格的接口安全管理…

用“堆”模拟实现“优先级队列”

PriorityQueue优先级队列 1. 优先级队列的概念2. 优先队列的模拟实现3 堆的概念4. 堆的存储方式5. 堆向下调整6. 堆的创建7. 堆的插入8. 堆的删除9. 用堆模拟实现优先级队列 1. 优先级队列的概念 前面我们学习了队列,队列是一种“先进先出”的数据结构,…

智慧农业大数据平台:智汇田园,数驭未来

智慧农业大数据平台 计讯物联智慧农业大数据平台是一个集管理数字化、作业自动化、生产智能化、产品绿色化、环境信息化、服务现代化于一体的多功能监管系统。它通过与硬件产品的搭配使用,实现对农业生产全过程的实时监测、精准控制和科学管理。该平台集成了多个数…