R语言中的Lasso回归:全面指南与实战案例

Lasso回归(Least Absolute Shrinkage and Selection Operator)是一种用于回归分析的正则化方法,旨在通过引入L1惩罚项来减少模型的复杂性,防止过拟合,并进行变量选择。本文将详细介绍如何在R语言中实现Lasso回归,包括数据准备、模型训练、参数选择和结果分析。

1. Lasso回归的基本原理

Lasso回归通过对回归系数施加L1惩罚,使得一些系数缩小到零,从而实现变量选择。这对于处理高维数据集尤为重要,因为它能够有效地选择出对预测结果影响最大的变量。

Lasso回归的目标函数可以表示为:

[
\text{minimize} \quad \frac{1}{2n} \sum_{i=1}^{n} (y_i - \hat{y}i)^2 + \lambda \sum{j=1}^{p} |\beta_j|
]

其中,(y_i)是目标变量,(\hat{y}_i)是预测值,(\beta_j)是回归系数,(\lambda)是惩罚参数。

2. 环境准备与数据加载

在R中,我们使用glmnet包来实现Lasso回归。首先,确保安装并加载该包。

# 安装glmnet包
install.packages("glmnet")
library(glmnet)

接下来,我们将使用一个示例数据集。这里以Kaggle上的心脏病数据集为例。

# 设置工作目录并加载数据
setwd('C:/Rdata')
data <- read.csv('heart.csv', header = TRUE)
str(data)  # 查看数据结构

3. 数据预处理

在进行Lasso回归之前,我们需要对数据进行标准化处理,确保所有特征在同一尺度上。

# 标准化数值型变量
data_cate <- data[, c('age', 'trtbps', 'chol', 'thalachh', 'oldpeak')]
normalize_data <- as.data.frame(scale(data_cate))
data[, c('age', 'trtbps', 'chol', 'thalachh', 'oldpeak')] <- normalize_data

4. 模型训练与交叉验证

Lasso回归模型的训练可以通过glmnet函数实现。我们需要将特征变量转换为矩阵形式。

# 准备特征矩阵和目标变量
train_matrix <- as.matrix(data[, 1:ncol(data) - 1])
target_variable <- data[, ncol(data)]# 进行Lasso回归
cvfit <- cv.glmnet(x = train_matrix, y = target_variable, alpha = 1)

在这里,alpha = 1表示我们使用Lasso回归。我们还可以通过交叉验证来选择最佳的惩罚参数(\lambda)。

# 绘制交叉验证结果
plot(cvfit, xvar = 'lambda', label = TRUE)
best_lambda <- cvfit$lambda.min  # 获取最佳lambda值

5. 模型评估与特征选择

使用最佳的(\lambda)值重新训练Lasso模型,并提取非零系数的特征。

# 使用最佳lambda值训练最终模型
lasso_model_best <- glmnet(x = train_matrix, y = target_variable, alpha = 1, lambda = best_lambda)# 获取非零系数的特征
non_zero_coef <- predict(lasso_model_best, type = 'nonzero')
selected_features <- colnames(data[, 1:ncol(data) - 1])[non_zero_coef[, 1]]
print(selected_features)  # 输出选择的特征

6. 结果分析与可视化

我们可以通过绘制Lasso回归路径图来观察特征系数的变化。

# 绘制Lasso系数变化图
lasso_model <- glmnet(x = train_matrix, y = target_variable, alpha = 1)
plot(lasso_model, xvar = "lambda")

7. 实际应用案例

Lasso回归在许多领域都有广泛应用,尤其是在医学、金融和生物信息学等领域。通过选择重要特征,Lasso回归可以帮助研究人员构建更简洁且有效的预测模型。

例如,在一项关于心脏病的研究中,研究人员使用Lasso回归分析了多个生理指标,以识别出对心脏病风险影响最大的因素。这种方法不仅提高了模型的预测能力,还降低了过拟合的风险。

结论

Lasso回归是一种强大的工具,能够有效处理高维数据集并进行变量选择。通过R语言中的glmnet包,我们可以轻松实现Lasso回归分析。希望本文能帮助你更好地理解和应用Lasso回归。

如需更深入的学习,可以参考相关文献和在线教程,实践中不断探索和应用Lasso回归的技巧与方法。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/459920.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【Cri-Dockerd】安装cri-dockerd

cri-dockerd的作用&#xff1a; 在k8s1.24之前。k8s会通过dockershim来调用docker进行容器运行时containerd&#xff0c;并且会自动安装dockershim&#xff0c;但是从1.24版本之前k8s为了降低容器运行时的调用的复杂度和效率&#xff0c;直接调用containerd了&#xff0c;并且…

git下载和配置

git是什么&#xff1f; Git是一种分布式版本控制系统&#xff0c;用于跟踪文件的变化&#xff0c;尤其是源代码。它允许多个开发者在同一项目上进行协作&#xff0c;同时保持代码的历史记录。Git的主要特点包括&#xff1a; 分布式&#xff1a;每个开发者都有项目的完整副本&a…

GPT避坑指南:如何辨别逆向、AZ、OpenAI官转

市面上有些说自己是官转&#xff0c;一刀只需要1块甚至几毛钱&#xff0c;并声称官方倍率的&#xff0c;很大可能就是使用的是 逆向或Azure。 如何鉴别逆向 逆向的种类很多&#xff0c;主要分为3类 逆向不知名A| 镜像站或偷的 key。成本约等于0&#xff0c;调用聊天数据可能在…

postgresql增量备份系列一

简介 在一些大容量得数据库应用中&#xff0c;采用全量备份得方式&#xff0c;会带来大量时间浪费和开销&#xff0c;此时定期的增量备份可以使得数据存储周期变长。本文讲解几个增量备份工具 pg_basebackup pg_receivewal&#xff08;异地归档模式&#xff09; 使用pg_bas…

arcgis pro 3.3.1安装教程

一、获取方式&#xff1a; http://dt4.8tupian.net/2/29913a61b1500.pg3二、软件目录&#xff1a; 三、安装步骤&#xff1a; &#xff08;1&#xff09;安装软件运行环境windowsdesktop-runtime 8.0.4; &#xff08;2&#xff09;选中安装文件arcgispro_33zh_cn_190127.exe&…

LabVIEW汽车状态监测系统

LabVIEW汽车状态监测系统通过模拟车辆运行状态&#xff0c;有效地辅助工程师进行故障预测和维护计划优化&#xff0c;从而提高汽车的可靠性和安全性。 项目背景&#xff1a; 现代汽车工业面临着日益增长的安全要求和客户对于车辆性能的高期望。汽车状态监测系统旨在实时监控汽…

GiantPandaCVARM Neon Intrinsics 学习指北:从入门、进阶到学个通透

【GiantPandaCV导语】Neon是手机普遍支持的计算加速指令集&#xff0c;是AI落地的工程利器。Neon Intrinsics 的出现&#xff0c;缓解了汇编语言难学难写的难题&#xff0c;值得工程师们开发利用。 前言 Neon是ARM平台的向量化计算指令集&#xff0c;通过一条指令完成多个数据…

python爬虫抓取豆瓣数据教程

环境准备 在开始之前&#xff0c;你需要确保你的Python环境已经安装了以下库&#xff1a; requests&#xff1a;用于发送HTTP请求。BeautifulSoup&#xff1a;用于解析HTML文档。 如果你还没有安装这些库&#xff0c;可以通过以下命令安装&#xff1a; pip install requests…

SD-WAN分布式组网:构建高效、灵活的企业网络架构

随着企业数字化转型的深入&#xff0c;分布式组网逐渐成为企业网络架构中的核心需求。无论是跨区域的分支机构互联&#xff0c;还是企业与云服务的连接&#xff0c;如何在不同区域实现高效、低延迟的网络传输&#xff0c;已成为业务成功的关键。SD-WAN&#xff08;软件定义广域…

使用Python和OpenCV实现火焰检测

使用Python和OpenCV实现火焰检测 项目解释&#xff1a; 此 Python 代码是使用 OpenCV、线程、声音和电子邮件功能的火灾探测系统的简单示例。 以下是它的功能的简单描述&#xff1a; 导入库&#xff1a;代码首先导入必要的库&#xff1a; cv2&#xff1a;用于图像和视频处理…

一篇文章入门傅里叶变换

文章目录 傅里叶变换欧拉公式傅里叶变换绕圈记录法质心记录法傅里叶变换公式第一步&#xff1a;旋转的表示第二步&#xff1a;缠绕的表示第三步&#xff1a;质心的表示最终步&#xff1a;整理积分限和系数 参考文献 傅里叶变换 在学习傅里叶变换之前&#xff0c;我们先来了解一…

基于uniapp微信小程序的校园二手书交易系统

作者&#xff1a;计算机学姐 开发技术&#xff1a;SpringBoot、SSM、Vue、MySQL、JSP、ElementUI、Python、小程序等&#xff0c;“文末源码”。 专栏推荐&#xff1a;前后端分离项目源码、SpringBoot项目源码、Vue项目源码、SSM项目源码、微信小程序源码 精品专栏&#xff1a;…

Spring 框架环境搭建

一、环境要求 JDK版本&#xff1a; JDK1.7及以上版本 Spring版本&#xff1a; Spring5.x版本 二、新建Maven项目 1. 创建 Maven 的普通 Java 项⽬ 2.设置项目坐标 3.设置项目的Maven环境 4.设置项目的名称和存放的工作空间 三、调整项目环境 1.修改JDK版本 properties&g…

前端 eslint 配置,以及在git提交之前自动format

目录 1、配置eslint步骤 1、eslint安装配置步骤 2、配置scripts步骤 3、测试eslint 2、配置git-hook1、安装环境2、最终效果 众所周知&#xff0c;前端项目可以在报很多error的情况下运行。但是良好的代码规范仍然有利于项目的开发维护&#xff0c;这里提供我的规范&#xff0c…

SpringBoot篇(运维实用篇 - 临时属性)

目录 一、临时属性设置 1. 简介 2. 属性加载优先级 那是否还有其他的配置方式呢&#xff1f; 3. 知识小结 二、开发环境中使用临时属性 1. 如何操作 2. 知识小结 3. 思考 三、配置文件分类 1. 简介 2. 4个级别 3. 为什么设计多种配置文件&#xff1f; 一个典型的应…

基于vue框架的的汇生活家居商城的设计与实现bdjlq(程序+源码+数据库+调试部署+开发环境)系统界面在最后面。

系统程序文件列表 项目功能&#xff1a;商品分类,商品信息,用户 开题报告内容 开题报告 项目名称&#xff1a;基于Vue框架的汇生活家居商城的设计与实现 一、项目背景与意义 随着互联网技术的不断发展和普及&#xff0c;电子商务已成为现代商业的重要组成部分。家居商城作…

免费可离线的AI抠图工具(鲜艺AI抠图 )免费下载

鲜艺AI抠图是一款使用Tauri 2 和RMBG-1.4 开发并免费提供的AI抠图工具&#xff0c;它能够快速去除图片背景&#xff0c;并支持本地和在线图片处理。&#xff1a; 极速AI抠图&#xff1a; 基于最新的AI技术&#xff0c;能够精准识别图像中的前景和背景&#xff0c;实现快速抠图…

面试经典 150 题.P27. 移除元素(002)

本题来自&#xff1a;力扣-面试经典 150 题 面试经典 150 题 - 学习计划 - 力扣&#xff08;LeetCode&#xff09;全球极客挚爱的技术成长平台https://leetcode.cn/studyplan/top-interview-150/ 题解&#xff1a; class Solution {public int removeElement(int[] nums, int…

标准正态分布的数据 tensorflow 实现正态分布图,python 编程,数据分析和人工智能...

登录后复制 import tensorflow as tfimport matplotlib.pyplot as plt# 设置随机种子以获得可重复的结果tf.random.set_seed(42)# 生成正态分布的数据# mean0 和 stddev1 表示生成标准正态分布的数据# shape(1000,) 表示生成1000个数据点data tf.random.normal(mean0, stddev1…

13.音乐管理系统(基于SpringBoot + Vue)

目录 1.系统的受众说明 ​​​​​​​ 2 需求分析 2.1用例图及用例分析 2.1.1 用户用例图及用例分析 2.1.2 管理员用例图及用例分析 2.2 系统结构图和流程图 2.2.1 音乐播放器的系统流程图&#xff08;图2.2.1-1&#xff09; 2.2.2 系统功能表&#xff08;表2.2.2…