基于卷积神经网络的苹果病害识别与防治系统,resnet50,mobilenet模型【pytorch框架+python源码】

 更多目标检测和图像分类识别项目可看我主页其他文章

功能演示:

苹果病害识别与防治系统,卷积神经网络,resnet50,mobilenet【pytorch框架,python源码】_哔哩哔哩_bilibili

(一)简介

基于卷积神经网络的苹果病害识别与防治系统是在pytorch框架下实现的,这是一个完整的项目,包括代码,数据集,训练好的模型权重,模型训练记录,ui界面和各种模型指标图表等。

该项目有两个可选模型:resnet50和mobilenet,两个模型都在项目中;GUI界面由pyqt5设计和实现,界面中给出模型预测病害的结果、概率和对应的防治措施。此项目的两个模型可做对比分析,增加工作量。

该项目是在pycharm和anaconda搭建的虚拟环境执行,pycharm和anaconda安装和配置可观看教程:

超详细的pycharm+anaconda搭建python虚拟环境_pycharm虚拟环境搭建-CSDN博客

(二)项目介绍

1. 项目结构

​​​​

该项目可以使用已经训练好的模型权重,也可以自己重新训练,自己训练也比较简单

以训练resnet50模型为例:

第一步:修改model_resnet50.py的数据集路径,模型名称、模型训练的轮数

​ 

第二步:模型训练和验证,即直接运行model_resnet50.py文件

第三步:使用模型,即运行gui_chinese.py文件即可通过GUI界面来展示模型效果

2. 数据结构

​​​​​

部分数据展示: 

​​​​

3.GUI界面(技术栈:pyqt5+python+opencv) 
1)gui初始界面 

2)gui分类、识别界面 

​​​​

4.模型训练和验证的一些指标及效果
​​​​​1)模型训练和验证的准确率曲线,损失曲线

​​​​​2)热力图

​​3)准确率、精确率、召回率、F1值

4)模型训练和验证记录

​​

(三)代码

由于篇幅有限,只展示核心代码

    def main(self, epochs):# 记录训练过程log_file_name = './results/resnet50训练和验证过程.txt'# 记录正常的 print 信息sys.stdout = Logger(log_file_name)print("using {} device.".format(self.device))# 开始训练,记录开始时间begin_time = time()# 加载数据train_loader, validate_loader, class_names, train_num, val_num = self.data_load()print("class_names: ", class_names)train_steps = len(train_loader)val_steps = len(validate_loader)# 加载模型model = self.model_load()  # 创建模型# 修改全连接层的输出维度in_channel = model.fc.in_featuresmodel.fc = nn.Linear(in_channel, len(class_names))# 模型结构可视化x = torch.randn(16, 3, 224, 224)  # 随机生成一个输入# 模型结构保存路径model_visual_path = 'results/resnet50_visual.onnx'# 将 pytorch 模型以 onnx 格式导出并保存torch.onnx.export(model, x, model_visual_path)  # netron.start(model_visual_path)  # 浏览器会自动打开网络结构# 将模型放入GPU中model.to(self.device)# 定义损失函数loss_function = nn.CrossEntropyLoss()# 定义优化器params = [p for p in model.parameters() if p.requires_grad]optimizer = optim.Adam(params=params, lr=0.0001)train_loss_history, train_acc_history = [], []test_loss_history, test_acc_history = [], []best_acc = 0.0for epoch in range(0, epochs):# 下面是模型训练model.train()running_loss = 0.0train_acc = 0.0train_bar = tqdm(train_loader, file=sys.stdout)# 进来一个batch的数据,计算一次梯度,更新一次网络for step, data in enumerate(train_bar):# 获取图像及对应的真实标签images, labels = data# 清空过往梯度optimizer.zero_grad()# 得到预测的标签outputs = model(images.to(self.device))# 计算损失train_loss = loss_function(outputs, labels.to(self.device))# 反向传播,计算当前梯度train_loss.backward()# 根据梯度更新网络参数optimizer.step()  # 累加损失running_loss += train_loss.item()# 每行最大值的索引predict_y = torch.max(outputs, dim=1)[1]  # torch.eq()进行逐元素的比较,若相同位置的两个元素相同,则返回True;若不同,返回Falsetrain_acc += torch.eq(predict_y, labels.to(self.device)).sum().item()# 更新进度条train_bar.desc = "train epoch[{}/{}] loss:{:.3f}".format(epoch + 1,epochs,train_loss)# 下面是模型验证# 不启用 BatchNormalization 和 Dropout,保证BN和dropout不发生变化model.eval()# accumulate accurate number / epochval_acc = 0.0  testing_loss = 0.0# 张量的计算过程中无需计算梯度with torch.no_grad():  val_bar = tqdm(validate_loader, file=sys.stdout)for val_data in val_bar:# 获取图像及对应的真实标签val_images, val_labels = val_data# 得到预测的标签outputs = model(val_images.to(self.device))# 计算损失val_loss = loss_function(outputs, val_labels.to(self.device))  testing_loss += val_loss.item()# 每行最大值的索引predict_y = torch.max(outputs, dim=1)[1]  # torch.eq()进行逐元素的比较,若相同位置的两个元素相同,则返回True;若不同,返回Falseval_acc += torch.eq(predict_y, val_labels.to(self.device)).sum().item()train_loss = running_loss / train_stepstrain_accurate = train_acc / train_numtest_loss = testing_loss / val_stepsval_accurate = val_acc / val_numtrain_loss_history.append(train_loss)train_acc_history.append(train_accurate)test_loss_history.append(test_loss)test_acc_history.append(val_accurate)print('[epoch %d] train_loss: %.3f  val_accuracy: %.3f' %(epoch + 1, train_loss, val_accurate))# 保存最佳模型if val_accurate > best_acc:best_acc = val_accuratetorch.save(model.state_dict(), self.model_name)# 记录结束时间end_time = time()run_time = end_time - begin_timeprint('该循环程序运行时间:', run_time, "s")# 绘制模型训练过程图self.show_loss_acc(train_loss_history, train_acc_history,test_loss_history, test_acc_history)# 画热力图test_real_labels, test_pre_labels = self.heatmaps(model, validate_loader, class_names)# 计算混淆矩阵self.calculate_confusion_matrix(test_real_labels, test_pre_labels, class_names)

​​​​​(四)总结

以上即为整个项目的介绍,整个项目主要包括以下内容:完整的程序代码文件、训练好的模型、数据集、UI界面和各种模型指标图表等。整套项目齐全,一步到位,省心省力。

项目运行过程如出现问题,请及时交流!

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/460132.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

YOLO即插即用模块---CAA

oly Kernel Inception Network for Remote Sensing Detection 论文地址:2403.06258https://arxiv.org/pdf/2403.06258 主要问题: 目标尺度变化大: 遥感图像中目标尺度范围广泛,从大型物体(如足球场)到小型…

【网络面试篇】TCP与UDP类

目录 一、综述 1. TCP与UDP的概念 2. 特点 3. 区别 4. 对应的使用场景 二、补充 1. 基础概念 (1)面向连接 (2)可靠的 (3)字节流 2. 相关问题 (1)TCP 和 UDP 可以同时绑定…

【C++】类和对象(六):运算符重载1

大家好,我是苏貝,本篇博客带大家了解C的运算符重载,如果你觉得我写的还不错的话,可以给我一个赞👍吗,感谢❤️ 目录 (A) 引入(B) 运算符重载 (A) 引入 写一个Date日期类,问:如果我…

C语言(一维数组)

如果对你有帮助,请点个免费的赞吧,谢谢汪。(点个关注也可以!)\n\n如果以下内容需要补充和修改,请大家在评论区交流~ 思维导图 1.数组 由一个或多个相同的数据类型组成的集合 特点: 数据类型相…

Mount Image Pro,在取证安全的环境中挂载和访问镜像文件内容

天津鸿萌科贸发展有限公司从事数据安全服务二十余年,致力于为各领域客户提供专业的数据恢复、数据备份解决方案与服务,并针对企业面临的数据安全风险,提供专业的相关数据安全培训。 天津鸿萌科贸发展有限公司是 GetData 公司数据恢复与取证工…

上市公司企业数字金融认知数据集(2001-2023年)

一、测算方式:参考C刊《经济学家》王诗卉(2021)老师的做法,数字金融认知使用每万字年报描述中包含的对数字金融相关关键词的提及次数,关键词为:互联网、数字化、智能、大数据、电子银行、金融科技、科技金融…

【Mybatis】动态SQL+配置文件+数据库连接池+企业规范(10)

本系列共涉及4个框架:Sping,SpringBoot,Spring MVC,Mybatis。 博客涉及框架的重要知识点,根据序号学习即可。 目录 本系列共涉及4个框架:Sping,SpringBoot,Spring MVC,Mybatis。 博客涉及框架的重要知识点,根据序号学习即可。 …

Web3的去中心化社交网络:区块链技术如何改变互动方式

随着互联网技术的不断进步,社交网络正在经历一场深刻的变革。Web3,作为新一代互联网技术的代表,正通过区块链和去中心化理念改变着我们与他人互动的方式。传统的社交网络通常由大型公司控制,用户数据的集中化管理和隐私问题备受关…

大数据-191 Elasticsearch - ES 集群模式 配置启动 规划调优

点一下关注吧!!!非常感谢!!持续更新!!! 目前已经更新到了: Hadoop(已更完)HDFS(已更完)MapReduce(已更完&am…

短信登录的实现-redis和session的比较

目录 短信登录功能的实现一:基于session进行短信登录1:发送验证码2:登录3:登录验证拦截器4:隐藏用户敏感信息二:session的集群共享问题三:基于redis实现短信登录登录的刷新问题 短信登录功能的实…

中欧科学家论坛暨第六届人工智能与先进制造国际会议(AIAM 2024)在德国法兰克福成功举办,两百余名中外科学家共襄盛举

2024年10月20至21日,首届中欧科学家论坛在德国法兰克福的SAALBAU Titus Forum国际会议中心成功举行。中国驻法兰克福总领事馆伍鹏飞副总领事、德国兰斯巴赫-鲍姆巴赫市市长Michael Merz亲自出席并致辞。2004年诺贝尔化学奖得主Aaron Ciechanover教授和法国国家科学院…

直接删除Github上的文件

直接删除Github上的文件 说明:此操作只删除Github上的文件,本地仓库文件不受影响 1.确定要删除哪个分支文件,以删除main为例, 1.找到本地仓库位置以StudyNote为例,右键 bash here 2.打开命令窗口,将Github的StudyN…

SpringBoot篇(运维实用篇 - 日志)

目录 一、简介 二、代码中使用日志工具记录日志 1. 操作步骤 步骤1:添加日志记录操作 步骤2:设置日志输出级别 步骤3:设置日志组 2. 知识小结 三、优化日志对象创建代码 1. 实例 2. 总结 四、日志输出格式控制 1. 实例 2. 总结 …

Java多线程编程基础

目录 编写第一个多线程程序 1. 方式一 : 继承Thread类, 重写run方法 2. 方式二: 实现Runnable接口, 重写run方法 3. 方式三: 使用Lambda表达式 [匿名内部类] [Lambda表达式] 在上个文章中, 我们了解了进程和线程的相关概念. 那么, 在Java中, 我们如何进行多线程编程呢? …

postman的脚本设置接口关联

pm常用的对象 变量基础知识 postman获取响应结果的脚本的编写 下面是购物场景存在接口信息的关联 登录进入---搜索商品---进入商品详情---加入购物车 资源在附件中,可以私聊单独发送 postman的SHA256加密 var CryptoJS require(crypto-js);// 需要加密的字符串 …

ip地址分为几大类-IP和子网掩码对照表

一、IP地址的基本概念与分类 IP地址是用于在网络中标识每个设备的逻辑地址。互联网协议将IP地址分为A、B、C、D和E五类,其中A、B、C三类最常用,它们主要根据地址的首位位数以及用途进行划分。 A类地址: 范围:0.0.0.0 - 127.255.2…

docker占用磁盘过多问题

我在windows系统上用docker,安装在C盘环境下,我发现C盘占用了大量的空间,查找后发现是docker的映像文件占用的,于是开始清理,中间还踩个坑,记录一下,下次需要的时候方便找。 踩坑 我本想移动映…

Xss_less靶场攻略(1-18)

xss-lab-less1 ur特殊字符转义 存在url中 转义符为 %2B& 转义符为 %26空格 转义符为 或 %20/ 转义符为 %2F? 转义符为 %3F% 转义符为 %25#转义符为 %23 转义符为 %3Dimg 标签懒加载 在XSS攻击中,img标签的src属性是一个常见的攻击向量,因为它可以…

聊聊Web3D 发展趋势

随着 Web 技术的不断演进,Web3D 正逐渐成为各行业数字化的重要方向。Web3D 是指在网页中展示 3D 内容的技术集合。近年来,由于 WebGL、WebGPU 等技术的发展,3D 内容已经能够直接在浏览器中渲染,为用户提供更加沉浸、互动的体验。以…

【传知代码】图像处理解决种子计数方法

文章目录 一、背景及意义介绍研究背景农业考种需求传统计数方法的局限性人工计数仪器设备计数 研究意义提高育种效率提高计数准确性广泛的适用性数据存档与分析便利 二、概述三、材料与数据准备以及方法介绍整体流程图像采集图像预处理形态学操作腐蚀运算开运算 图像二值化种子…