目录
一、二叉树理论基础
(一)二叉树的种类
二叉搜索树
平衡二叉搜索树
(二)二叉树的存储
(三)二叉树的遍历
(四)二叉树的定义
二、二叉树的递归遍历
三、二叉树的层序遍历
一、二叉树理论基础
代码随想录
(一)二叉树的种类
满二叉树、完全二叉树
满二叉树:如果一棵二叉树只有度为0的结点和度为2的结点,并且度为0的结点在同一层上,则这棵二叉树为满二叉树。
这棵二叉树为满二叉树,也可以说深度为k,有2^k-1个节点的二叉树。
完全二叉树
完全二叉树的定义如下:在完全二叉树中,除了最底层节点可能没填满外,其余每层节点数都达到最大值,并且最下面一层的节点都集中在该层最左边的若干位置。若最底层为第 h 层(h从1开始),则该层包含 1~ 2^(h-1) 个节点。
之前我们刚刚讲过优先级队列其实是一个堆,堆就是一棵完全二叉树,同时保证父子节点的顺序关系。
二叉搜索树
前面介绍的树,都没有数值的,而二叉搜索树是有数值的了,二叉搜索树是一个有序树。
-
若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值;
-
若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值;
-
它的左、右子树也分别为二叉排序树
下面这两棵树都是搜索树
平衡二叉搜索树
平衡二叉搜索树:又被称为AVL(Adelson-Velsky and Landis)树,且具有以下性质:它是一棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。
如图:
最后一棵 不是平衡二叉树,因为它的左右两个子树的高度差的绝对值超过了1。
C++中map、set、multimap,multiset的底层实现都是平衡二叉搜索树,所以map、set的增删操作时间时间复杂度是logn,注意我这里没有说unordered_map、unordered_set,unordered_map、unordered_set底层实现是哈希表。
所以大家使用自己熟悉的编程语言写算法,一定要知道常用的容器底层都是如何实现的,最基本的就是map、set等等,否则自己写的代码,自己对其性能分析都分析不清楚!
(二)二叉树的存储
二叉树可以链式存储,也可以顺序存储。
那么链式存储方式就用指针, 顺序存储的方式就是用数组。
链式存储如图:
链式存储是大家很熟悉的一种方式,那么我们来看看如何顺序存储呢?
其实就是用数组来存储二叉树,顺序存储的方式如图:
(三)二叉树的遍历
二叉树主要有两种遍历方式:
-
深度优先遍历:先往深走,遇到叶子节点再往回走。
-
广度优先遍历:一层一层的去遍历。
深度优先遍历
广度优先遍历的实现一般使用队列来实现,这也是队列先进先出的特点所决定的,因为需要先进先出的结构,才能一层一层的来遍历二叉树。
(四)二叉树的定义
C++代码如下:struct TreeNode {int val;TreeNode *left;TreeNode *right;TreeNode(int x) : val(x), left(NULL), right(NULL) {}};
二、二叉树的递归遍历
《代码随想录》算法视频公开课 (opens new window):每次写递归都要靠直觉? 这次带你学透二叉树的递归遍历! (opens new window),相信结合视频再看本篇题解,更有助于大家对本题的理解。
大家可以做一做leetcode上三道题目,分别是:
-
144.二叉树的前序遍历(opens new window)
-
145.二叉树的后序遍历(opens new window)
-
94.二叉树的中序遍历
前序遍历
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/class Solution {public:void traverse(TreeNode* cur,vector<int>& vec){if(cur==NULL) return ;vec.push_back(cur->val);traverse(cur->left,vec);traverse(cur->right,vec);}vector<int> preorderTraversal(TreeNode* root) {vector<int> result;traverse(root,result);return result;}};
后序遍历
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/class Solution {public:void traverse(TreeNode* cur,vector<int>& cal){if(cur==NULL) return ;traverse(cur->left,cal);traverse(cur->right,cal);cal.push_back(cur->val);}vector<int> postorderTraversal(TreeNode* root) {vector<int> arr;traverse(root,arr);return arr;}};
中序遍历
/*** Definition for a binary tree node.* struct TreeNode {* int val;* TreeNode *left;* TreeNode *right;* TreeNode() : val(0), left(nullptr), right(nullptr) {}* TreeNode(int x) : val(x), left(nullptr), right(nullptr) {}* TreeNode(int x, TreeNode *left, TreeNode *right) : val(x), left(left), right(right) {}* };*/class Solution {public:void traverse(TreeNode* cur,vector<int>& cal){if(cur==NULL) return;traverse(cur->left,cal);cal.push_back(cur->val);traverse(cur->right,cal);}vector<int> inorderTraversal(TreeNode* root) {vector<int> arr;traverse(root,arr);return arr;}};
三、二叉树的层序遍历
力扣题目链接
# 递归法class Solution {public:void order(TreeNode* cur, vector<vector<int>>& result, int depth){if (cur == nullptr) return;if (result.size() == depth) result.push_back(vector<int>());result[depth].push_back(cur->val);order(cur->left, result, depth + 1);order(cur->right, result, depth + 1);}vector<vector<int>> levelOrder(TreeNode* root) {vector<vector<int>> result;int depth = 0;order(root, result, depth);return result;}};
class Solution {public:vector<vector<int>> levelOrder(TreeNode* root) {queue<TreeNode*> que;if (root != NULL) que.push(root);vector<vector<int>> result;while (!que.empty()) {int size = que.size();vector<int> vec;// 这里一定要使用固定大小size,不要使用que.size(),因为que.size是不断变化的for (int i = 0; i < size; i++) {TreeNode* node = que.front();que.pop();vec.push_back(node->val);if (node->left) que.push(node->left);if (node->right) que.push(node->right);}result.push_back(vec);}return result;}};
不太理解非递归代码,对于指针以及c++语法不熟悉
今天先学到这里吧,最近事情比较多。