import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasetsiris = datasets.load_iris()
X = iris.data[:,2:]
y = iris.target
plt.scatter(X[y==0,0], X[y==0,1])
plt.scatter(X[y==1,0], X[y==1,1])
plt.scatter(X[y==2,0], X[y==2,1])
plt.show()
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
决策树
from sklearn.tree import DecisionTreeClassifierdt_clf = DecisionTreeClassifier(max_depth=2, criterion="entropy", random_state=42)
dt_clf.fit(X, y)
- 1.
- 2.
- 3.
- 4.
def plot_decision_boundary(model, axis):x0, x1 = np.meshgrid(np.linspace(axis[0], axis[1], int((axis[1]-axis[0])*100)).reshape(-1, 1),np.linspace(axis[2], axis[3], int((axis[3]-axis[2])*100)).reshape(-1, 1),)X_new = np.c_[x0.ravel(), x1.ravel()]y_predict = model.predict(X_new)zz = y_predict.reshape(x0.shape)from matplotlib.colors import ListedColormapcustom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9'])plt.contourf(x0, x1, zz, cmap=custom_cmap)
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
plot_decision_boundary(dt_clf, axis=[0.5, 7.5, 0, 3])
plt.scatter(X[y==0,0], X[y==0,1])
plt.scatter(X[y==1,0], X[y==1,1])
plt.scatter(X[y==2,0], X[y==2,1])
plt.show()
- 1.
- 2.
- 3.
- 4.
- 5.
非参数学习算法
可以解决分类问题
天然可以解决多分类问题
也可以解决回归问题
非常好的可解释性
信息熵
熵在信息论中代表 随机变量不确定度的度量
熵越大,数据的不确定性越高
熵越小,数据的不确定性越低
可视化
import numpy as np
import matplotlib.pyplot as plt
def entropy(p):return -p * np.log(p) - (1-p) * np.log(1-p)
x = np.linspace(0.01, 0.99, 200)
plt.plot(x, entropy(x))
plt.show()
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
使用信息熵寻找最优划分
import numpy as np
import matplotlib.pyplot as plt
from sklearn import datasetsiris = datasets.load_iris()
X = iris.data[:,2:]
y = iris.target
from sklearn.tree import DecisionTreeClassifierdt_clf = DecisionTreeClassifier(max_depth=2, criterion="entropy", random_state=42)
dt_clf.fit(X, y)
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
def plot_decision_boundary(model, axis):x0, x1 = np.meshgrid(np.linspace(axis[0], axis[1], int((axis[1]-axis[0])*100)).reshape(-1, 1),np.linspace(axis[2], axis[3], int((axis[3]-axis[2])*100)).reshape(-1, 1),)X_new = np.c_[x0.ravel(), x1.ravel()]y_predict = model.predict(X_new)zz = y_predict.reshape(x0.shape)from matplotlib.colors import ListedColormapcustom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9'])plt.contourf(x0, x1, zz, cmap=custom_cmap)
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
plot_decision_boundary(dt_clf, axis=[0.5, 7.5, 0, 3])
plt.scatter(X[y==0,0], X[y==0,1])
plt.scatter(X[y==1,0], X[y==1,1])
plt.scatter(X[y==2,0], X[y==2,1])
plt.show()
- 1.
- 2.
- 3.
- 4.
- 5.
模拟使用信息熵进行划分
def split(X, y, d, value):index_a = (X[:,d] <= value)index_b = (X[:,d] > value)return X[index_a], X[index_b], y[index_a], y[index_b]
- 1.
- 2.
- 3.
- 4.
from collections import Counter
from math import logdef entropy(y):counter = Counter(y)res = 0.0for num in counter.values():p = num / len(y)res += -p * log(p)return resdef try_split(X, y):best_entropy = float('inf')best_d, best_v = -1, -1for d in range(X.shape[1]):sorted_index = np.argsort(X[:,d])for i in range(1, len(X)):if X[sorted_index[i], d] != X[sorted_index[i-1], d]:v = (X[sorted_index[i], d] + X[sorted_index[i-1], d])/2X_l, X_r, y_l, y_r = split(X, y, d, v)p_l, p_r = len(X_l) / len(X), len(X_r) / len(X)e = p_l * entropy(y_l) + p_r * entropy(y_r)if e < best_entropy:best_entropy, best_d, best_v = e, d, vreturn best_entropy, best_d, best_v
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
best_entropy, best_d, best_v = try_split(X, y)
print("best_entropy =", best_entropy)
print("best_d =", best_d)
print("best_v =", best_v)
- 1.
- 2.
- 3.
- 4.
X1_l, X1_r, y1_l, y1_r = split(X, y, best_d, best_v)
- 1.
best_entropy2, best_d2, best_v2 = try_split(X1_r, y1_r)
print("best_entropy =", best_entropy2)
print("best_d =", best_d2)
print("best_v =", best_v2)
- 1.
- 2.
- 3.
- 4.
X2_l, X2_r, y2_l, y2_r = split(X1_r, y1_r, best_d2, best_v2)
- 1.
基尼系数
import numpy as np
import matplotlib.pyplot as plt
- 1.
- 2.
from sklearn import datasetsiris = datasets.load_iris()
X = iris.data[:,2:]
y = iris.target
- 1.
- 2.
- 3.
- 4.
- 5.
from sklearn.tree import DecisionTreeClassifierdt_clf = DecisionTreeClassifier(max_depth=2, criterion="gini", random_state=42)
dt_clf.fit(X, y)
- 1.
- 2.
- 3.
- 4.
def plot_decision_boundary(model, axis):x0, x1 = np.meshgrid(np.linspace(axis[0], axis[1], int((axis[1]-axis[0])*200)).reshape(-1, 1),np.linspace(axis[2], axis[3], int((axis[3]-axis[2])*200)).reshape(-1, 1),)X_new = np.c_[x0.ravel(), x1.ravel()]y_predict = model.predict(X_new)zz = y_predict.reshape(x0.shape)from matplotlib.colors import ListedColormapcustom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9'])plt.contourf(x0, x1, zz, cmap=custom_cmap)
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
plot_decision_boundary(dt_clf, axis=[0.5, 7.5, 0, 3])
plt.scatter(X[y==0,0], X[y==0,1])
plt.scatter(X[y==1,0], X[y==1,1])
plt.scatter(X[y==2,0], X[y==2,1])
plt.show()
- 1.
- 2.
- 3.
- 4.
- 5.
模拟使用基尼系数划分
from collections import Counter
from math import logdef split(X, y, d, value):index_a = (X[:,d] <= value)index_b = (X[:,d] > value)return X[index_a], X[index_b], y[index_a], y[index_b]def gini(y):counter = Counter(y)res = 1.0for num in counter.values():p = num / len(y)res -= p**2return resdef try_split(X, y):best_g = float('inf')best_d, best_v = -1, -1for d in range(X.shape[1]):sorted_index = np.argsort(X[:,d])for i in range(1, len(X)):if X[sorted_index[i], d] != X[sorted_index[i-1], d]:v = (X[sorted_index[i], d] + X[sorted_index[i-1], d])/2X_l, X_r, y_l, y_r = split(X, y, d, v)p_l, p_r = len(X_l) / len(X), len(X_r) / len(X)g = p_l * gini(y_l) + p_r * gini(y_r)if g < best_g:best_g, best_d, best_v = g, d, vreturn best_g, best_d, best_v
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
- 16.
- 17.
- 18.
- 19.
- 20.
- 21.
- 22.
- 23.
- 24.
- 25.
- 26.
- 27.
- 28.
- 29.
- 30.
- 31.
- 32.
best_g, best_d, best_v = try_split(X, y)
print("best_g =", best_g)
print("best_d =", best_d)
print("best_v =", best_v)
- 1.
- 2.
- 3.
- 4.
X1_l, X1_r, y1_l, y1_r = split(X, y, best_d, best_v)
- 1.
best_g2, best_d2, best_v2 = try_split(X1_r, y1_r)
print("best_g =", best_g2)
print("best_d =", best_d2)
print("best_v =", best_v2)
- 1.
- 2.
- 3.
- 4.
X2_l, X2_r, y2_l, y2_r = split(X1_r, y1_r, best_d2, best_v2)
- 1.
信息熵 vs 基尼系数
熵信息的计算比基尼系数稍慢
scikit-learn中默认为基尼系数
大多数时候二者没有特别的效果优劣
CART与决策树中的超参数
CART
Classification And Regression Tree
根据某一个维度d和某一个阈值v进行二分
scikit-learn的决策树实现:CART
ID3, C4.5, C5.0
复杂度
import numpy as np
import matplotlib.pyplot as plt
- 1.
- 2.
from sklearn import datasetsX, y = datasets.make_moons(noise=0.25, random_state=666)
- 1.
- 2.
- 3.
plt.scatter(X[y==0,0], X[y==0,1])
plt.scatter(X[y==1,0], X[y==1,1])
plt.show()
- 1.
- 2.
- 3.
from sklearn.tree import DecisionTreeClassifierdt_clf = DecisionTreeClassifier()
dt_clf.fit(X, y)
- 1.
- 2.
- 3.
- 4.
def plot_decision_boundary(model, axis):x0, x1 = np.meshgrid(np.linspace(axis[0], axis[1], int((axis[1]-axis[0])*100)).reshape(-1, 1),np.linspace(axis[2], axis[3], int((axis[3]-axis[2])*100)).reshape(-1, 1),)X_new = np.c_[x0.ravel(), x1.ravel()]y_predict = model.predict(X_new)zz = y_predict.reshape(x0.shape)from matplotlib.colors import ListedColormapcustom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9'])plt.contourf(x0, x1, zz, linewidth=5, cmap=custom_cmap)
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
plot_decision_boundary(dt_clf, axis=[-1.5, 2.5, -1.0, 1.5])
plt.scatter(X[y==0,0], X[y==0,1])
plt.scatter(X[y==1,0], X[y==1,1])
plt.show()
- 1.
- 2.
- 3.
- 4.
dt_clf2 = DecisionTreeClassifier(max_depth=2)
dt_clf2.fit(X, y)plot_decision_boundary(dt_clf2, axis=[-1.5, 2.5, -1.0, 1.5])
plt.scatter(X[y==0,0], X[y==0,1])
plt.scatter(X[y==1,0], X[y==1,1])
plt.show()
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
dt_clf3 = DecisionTreeClassifier(min_samples_split=10)
dt_clf3.fit(X, y)plot_decision_boundary(dt_clf3, axis=[-1.5, 2.5, -1.0, 1.5])
plt.scatter(X[y==0,0], X[y==0,1])
plt.scatter(X[y==1,0], X[y==1,1])
plt.show()
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
dt_clf4 = DecisionTreeClassifier(min_samples_leaf=6)
dt_clf4.fit(X, y)plot_decision_boundary(dt_clf4, axis=[-1.5, 2.5, -1.0, 1.5])
plt.scatter(X[y==0,0], X[y==0,1])
plt.scatter(X[y==1,0], X[y==1,1])
plt.show()
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
dt_clf5 = DecisionTreeClassifier(max_leaf_nodes=4)
dt_clf5.fit(X, y)plot_decision_boundary(dt_clf5, axis=[-1.5, 2.5, -1.0, 1.5])
plt.scatter(X[y==0,0], X[y==0,1])
plt.scatter(X[y==1,0], X[y==1,1])
plt.show()
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
min_samples_split
min_samples leaf
min_weight fraction leaf
max depth
max leaf nodesmin features
http://scikit-learn.org/stable/modules/generated/sklearn.tree.DecisionTreeClassifier.html#sklearn.tree.DecisionTreeClassifier
决策树解决回归问题
import numpy as np
import matplotlib.pyplot as plt
- 1.
- 2.
from sklearn import datasetsboston = datasets.load_boston()
X = boston.data
y = boston.target
- 1.
- 2.
- 3.
- 4.
- 5.
from sklearn.model_selection import train_test_splitX_train, X_test, y_train, y_test = train_test_split(X, y, random_state=666)
- 1.
- 2.
- 3.
from sklearn.tree import DecisionTreeRegressordt_reg = DecisionTreeRegressor()
dt_reg.fit(X_train, y_train)
- 1.
- 2.
- 3.
- 4.
模型复杂度曲线
决策树的局限性
import numpy as np
import matplotlib.pyplot as plt
- 1.
- 2.
from sklearn import datasetsiris = datasets.load_iris()
X = iris.data[:,2:]
y = iris.target
- 1.
- 2.
- 3.
- 4.
- 5.
from sklearn.tree import DecisionTreeClassifiertree_clf = DecisionTreeClassifier(max_depth=2, criterion="entropy", random_state=42)
tree_clf.fit(X, y)
- 1.
- 2.
- 3.
- 4.
def plot_decision_boundary(model, axis):x0, x1 = np.meshgrid(np.linspace(axis[0], axis[1], int((axis[1]-axis[0])*200)).reshape(-1, 1),np.linspace(axis[2], axis[3], int((axis[3]-axis[2])*200)).reshape(-1, 1),)X_new = np.c_[x0.ravel(), x1.ravel()]y_predict = model.predict(X_new)zz = y_predict.reshape(x0.shape)from matplotlib.colors import ListedColormapcustom_cmap = ListedColormap(['#EF9A9A','#FFF59D','#90CAF9'])plt.contourf(x0, x1, zz, linewidth=5, cmap=custom_cmap)
- 1.
- 2.
- 3.
- 4.
- 5.
- 6.
- 7.
- 8.
- 9.
- 10.
- 11.
- 12.
- 13.
- 14.
- 15.
plot_decision_boundary(tree_clf, axis=[0.5, 7.5, 0, 3])
plt.scatter(X[y==0,0], X[y==0,1])
plt.scatter(X[y==1,0], X[y==1,1])
plt.scatter(X[y==2,0], X[y==2,1])
plt.show()
- 1.
- 2.
- 3.
- 4.
- 5.
X_new = np.delete(X, 106, axis=0)
y_new = np.delete(y, 106)
- 1.
- 2.
tree_clf2 = DecisionTreeClassifier(max_depth=2, criterion="entropy", random_state=42)
tree_clf2.fit(X_new, y_new)
- 1.
- 2.
plot_decision_boundary(tree_clf2, axis=[0.5, 7.5, 0, 3])
plt.scatter(X_new[y_new==0,0], X_new[y_new==0,1])
plt.scatter(X_new[y_new==1,0], X_new[y_new==1,1])
plt.scatter(X_new[y_new==2,0], X_new[y_new==2,1])
plt.show()
- 1.
- 2.
- 3.
- 4.
- 5.