HO-XGBoost河马算法优化极限梯度提升树多变量回归预测(Matlab)
目录
- HO-XGBoost河马算法优化极限梯度提升树多变量回归预测(Matlab)
- 预测效果
- 基本介绍
- 程序设计
- 参考资料
预测效果
基本介绍
Matlab实现HO-XGBoost多变量回归预测,河马算法优化极限梯度提升树,优化最大迭代次数,深度,学习率。
河马优化算法(Hippopotamus Optimization Algorithm,HO)是一种群智能优化算法,HO算法是从河马观察到的固有行为中汲取灵感而构思的。该成果于2023年发表在知名SCI期刊、JCRQ1:Mathematics上。
1.data为数据集,7个输入特征,1个输出特征。
2.main.m为主程序文件,其他为函数文件,无需运行。运行环境为Matlab2018及以上,目前仅函数库支持windows系统。
3.命令窗口输出R2、MAE、MAPE和MSE。
程序设计
- 完整源码和数据获取方式私信回复HO-XGBoost河马算法优化极限梯度提升树多变量回归预测(Matlab)。
%% 清空环境变量
warning off % 关闭报警信息
close all % 关闭开启的图窗
clear % 清空变量
clc % 清空命令行%% 划分训练集和测试集
P_train = res(1: num_train_s, 1: f_)';
T_train = res(1: num_train_s, f_ + 1: end)';
M = size(P_train, 2);P_test = res(num_train_s + 1: end, 1: f_)';
T_test = res(num_train_s + 1: end, f_ + 1: end)';
N = size(P_test, 2);%% 数据归一化
[P_train, ps_input] = mapminmax(P_train, 0, 1);
P_test = mapminmax('apply', P_test, ps_input);[t_train, ps_output] = mapminmax(T_train, 0, 1);
t_test = mapminmax('apply', T_test, ps_output);
参考资料
[1] https://blog.csdn.net/kjm13182345320/article/details/128577926?spm=1001.2014.3001.5501
[2] https://blog.csdn.net/kjm13182345320/article/details/128573597?spm=1001.2014.3001.5501