【温酒笔记】UART

参考文档:野火STM32F103

1. 物理层

STM32见下图
在这里插入图片描述

1、TTL电平标准:

输出L:<0.8V;H:>2.4V。

输入L:<1.2V;H:>2.0V。
2、CMOS电平标准:

输出L:<0.1Vcc;H:>0.9Vcc。

输入L:<0.3Vcc;H:>0.7Vcc
3、RS232标准

逻辑1的电平为-3~-15V,逻辑0的电平为+3~+15V
4、RS485标准
输出A、B之间的电压差:H:+2+6V,L:-2-6V

输入A、B之间的电压差:H:>+200m V,L:<+200m V

2. 协议层

在这里插入图片描述
起始位:低电平
数据位:通常8位
校验位:奇偶校验 奇校验:01101001 校验位:1
停止位: 0.5 ,1, 1.5,2个电平

串口通信一般的配置:1起始位+8数据位+1停止位
速率计算: 115200波特率
1秒可传输: 115200/10 = 11520Byte
1毫秒可传输: 11520/1000 = 11Byte
在这里插入图片描述

简单区分同步和异步就是看通信时需不需要对外提供时钟输出,我们平时用的串口通信基本都是UART

3. 软件

typedef struct {uint32_t BaudRate;            //波特率uint32_t WordLength;          //字长uint32_t StopBits;            //停止位uint32_t Parity;              //校验位uint32_t Mode;                //UART模式uint32_t HwFlowCtl;           //硬件流控制uint32_t OverSampling;        // 过采样模式uint32_t CLKLastBit;          // 最尾位时钟脉冲
} USART_InitTypeDef;

4. 常用USB转UART芯片: CH340

5. 串口重定向

#include <stdio.h>//重定向c库函数printf到串口USARTx,重定向后可使用printf函数int fputc(int ch, FILE *f){/* 发送一个字节数据到串口USARTx */HAL_UART_Transmit(&UartHandle, (uint8_t *)&ch, 1, 0xFFFF);return (ch);}

在C语言HAL库中,fputc函数是printf函数内部的一个函数,功能是将字符ch写入到文件指针f所指向文件的当前写指针位置,简单理解就是把字符写入到特定文件中。我们使用USART函数重新修改fputc函数内容,达到类似“写入”的功能。
还有一点需要注意的,使用fput和fgetc函数达到重定向C语言HAL库输入输出函数必须在MDK的工程选项把“Use MicroLIB”勾选上,MicoroLIB是缺省C库的备选库,它对标准C库进行了高度优化使代码更少,占用更少资源。

6. 串口中断接收

1.  串口初始化
/* USART1 init function */void MX_USART1_UART_Init(void)
{/* USER CODE BEGIN USART1_Init 0 *//* USER CODE END USART1_Init 0 *//* USER CODE BEGIN USART1_Init 1 *//* USER CODE END USART1_Init 1 */huart1.Instance = USART1;huart1.Init.BaudRate = 115200;huart1.Init.WordLength = UART_WORDLENGTH_8B;huart1.Init.StopBits = UART_STOPBITS_1;huart1.Init.Parity = UART_PARITY_NONE;huart1.Init.Mode = UART_MODE_TX_RX;huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;huart1.Init.OverSampling = UART_OVERSAMPLING_16;huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;if (HAL_UART_Init(&huart1) != HAL_OK){Error_Handler();}/* USER CODE BEGIN USART1_Init 2 *//* USER CODE END USART1_Init 2 */}void HAL_UART_MspInit(UART_HandleTypeDef* uartHandle)
{GPIO_InitTypeDef GPIO_InitStruct = {0};if(uartHandle->Instance==USART1){/* USER CODE BEGIN USART1_MspInit 0 *//* USER CODE END USART1_MspInit 0 *//* USART1 clock enable */__HAL_RCC_USART1_CLK_ENABLE();__HAL_RCC_GPIOA_CLK_ENABLE();/**USART1 GPIO ConfigurationPA9     ------> USART1_TXPA10     ------> USART1_RX*/GPIO_InitStruct.Pin = GPIO_PIN_9|GPIO_PIN_10;GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;GPIO_InitStruct.Pull = GPIO_NOPULL;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;GPIO_InitStruct.Alternate = GPIO_AF4_USART1;HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);/* USART1 interrupt Init */HAL_NVIC_SetPriority(USART1_IRQn, 2, 0);HAL_NVIC_EnableIRQ(USART1_IRQn);/* USER CODE BEGIN USART1_MspInit 1 *//* USER CODE END USART1_MspInit 1 */}
}
2. 开启中断接收
HAL_UART_Receive_IT(&huart1, &rx_data, 1);3. 在中断回调函数中判断处理-重新开启中断接收
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
{if(huart->Instance == USART1) {rx_buff[rx_cnt++] = rx_data;HAL_UART_Receive_IT(&huart1, &rx_data, 1);}
}	

7. 串口空闲中断

在这里插入图片描述
数据发送间隔一个空数据
数据帧接收之后,从停止位开始一直为高电平,一直持续一帧的时间(包含停止位)为高电平,那时就会产生空闲中断
为了误进入串口空闲中断,RX的IO管脚设置为上拉模式

8. 空闲中断+DMA接收

  1. 串口DMA接收初始化
UART_HandleTypeDef huart1;
DMA_HandleTypeDef hdma_usart1_rx;/* USART1 init function */void MX_USART1_UART_Init(void)
{/* USER CODE BEGIN USART1_Init 0 *//* USER CODE END USART1_Init 0 *//* USER CODE BEGIN USART1_Init 1 *//* USER CODE END USART1_Init 1 */huart1.Instance = USART1;huart1.Init.BaudRate = 115200;huart1.Init.WordLength = UART_WORDLENGTH_8B;huart1.Init.StopBits = UART_STOPBITS_1;huart1.Init.Parity = UART_PARITY_NONE;huart1.Init.Mode = UART_MODE_TX_RX;huart1.Init.HwFlowCtl = UART_HWCONTROL_NONE;huart1.Init.OverSampling = UART_OVERSAMPLING_16;huart1.Init.OneBitSampling = UART_ONE_BIT_SAMPLE_DISABLE;huart1.AdvancedInit.AdvFeatureInit = UART_ADVFEATURE_NO_INIT;if (HAL_UART_Init(&huart1) != HAL_OK){Error_Handler();}/* USER CODE BEGIN USART1_Init 2 *//* USER CODE END USART1_Init 2 */}void HAL_UART_MspInit(UART_HandleTypeDef* uartHandle)
{GPIO_InitTypeDef GPIO_InitStruct = {0};if(uartHandle->Instance==USART1){/* USER CODE BEGIN USART1_MspInit 0 *//* USER CODE END USART1_MspInit 0 *//* USART1 clock enable */__HAL_RCC_USART1_CLK_ENABLE();__HAL_RCC_GPIOA_CLK_ENABLE();/**USART1 GPIO ConfigurationPA9     ------> USART1_TXPA10     ------> USART1_RX*/GPIO_InitStruct.Pin = GPIO_PIN_9;GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;GPIO_InitStruct.Pull = GPIO_NOPULL;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;GPIO_InitStruct.Alternate = GPIO_AF4_USART1;HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);GPIO_InitStruct.Pin = GPIO_PIN_10;GPIO_InitStruct.Mode = GPIO_MODE_AF_PP;GPIO_InitStruct.Pull = GPIO_PULLUP;GPIO_InitStruct.Speed = GPIO_SPEED_FREQ_VERY_HIGH;GPIO_InitStruct.Alternate = GPIO_AF4_USART1;HAL_GPIO_Init(GPIOA, &GPIO_InitStruct);/* USART1 DMA Init *//* USART1_RX Init */hdma_usart1_rx.Instance = DMA1_Channel3;hdma_usart1_rx.Init.Request = DMA_REQUEST_3;hdma_usart1_rx.Init.Direction = DMA_PERIPH_TO_MEMORY;hdma_usart1_rx.Init.PeriphInc = DMA_PINC_DISABLE;hdma_usart1_rx.Init.MemInc = DMA_MINC_ENABLE;hdma_usart1_rx.Init.PeriphDataAlignment = DMA_PDATAALIGN_BYTE;hdma_usart1_rx.Init.MemDataAlignment = DMA_MDATAALIGN_BYTE;hdma_usart1_rx.Init.Mode = DMA_NORMAL;hdma_usart1_rx.Init.Priority = DMA_PRIORITY_LOW;if (HAL_DMA_Init(&hdma_usart1_rx) != HAL_OK){Error_Handler();}__HAL_LINKDMA(uartHandle,hdmarx,hdma_usart1_rx);/* USART1 interrupt Init */HAL_NVIC_SetPriority(USART1_IRQn, 2, 0);HAL_NVIC_EnableIRQ(USART1_IRQn);/* USER CODE BEGIN USART1_MspInit 1 *//* USER CODE END USART1_MspInit 1 */}
}
  1. DMA初始化
/*** Enable DMA controller clock*/
void MX_DMA_Init(void)
{/* DMA controller clock enable */__HAL_RCC_DMA1_CLK_ENABLE();/* DMA interrupt init *//* DMA1_Channel2_3_IRQn interrupt configuration */HAL_NVIC_SetPriority(DMA1_Channel2_3_IRQn, 1, 0);HAL_NVIC_EnableIRQ(DMA1_Channel2_3_IRQn);}
  1. 注意看主函数初始化顺序
    先DMA后UART
  MX_GPIO_Init();MX_DMA_Init();MX_RTC_Init();MX_USART1_UART_Init();
  1. 中断函数中设置
    stm32f0xx_it.c 文件中
void USART1_IRQHandler(void)
{/* USER CODE BEGIN USART1_IRQn 0 *//* USER CODE END USART1_IRQn 0 */HAL_UART_IRQHandler(&huart1);/* USER CODE BEGIN USART1_IRQn 1 *///新添加的函数,用来处理串口空闲中断extern void USER_UART_IRQHandler(UART_HandleTypeDef *huart);USER_UART_IRQHandler(&huart1);/* USER CODE END USART1_IRQn 1 */
}
  1. 对空闲中断检测处理
extern uint8_t rx_buff[300];void USER_UART_IRQHandler(UART_HandleTypeDef *huart)
{if(huart->Instance == USART1)                                   //判断是否是串口1{if(RESET != __HAL_UART_GET_FLAG(&huart1, UART_FLAG_IDLE))   //判断是否是空闲中断{__HAL_UART_CLEAR_IDLEFLAG(&huart1);                     //清楚空闲中断标志(否则会一直不断进入中断)USAR_UART_IDLECallback(huart);                          //调用中断处理函数//停止本次DMA传输HAL_UART_DMAStop(&huart1);//设置DMA接收HAL_UART_Receive_DMA(&huart1, (uint8_t *)rx_buff, 300);}}
}
  1. 用户自己的回调处理函数
void USAR_UART_IDLECallback(UART_HandleTypeDef *huart)
{uint8_t len = 0;//计算接收到的数据长度len  =  300 - __HAL_DMA_GET_COUNTER(&hdma_usart1_rx);  //把数据拷贝memcpy(rx_buff_read+rx_len, rx_buff, len);rx_len += len;
}
  1. 在主函数初始化,轮询判断接收长度打印出接收数据
	 //使能串UART2 IDLE中断__HAL_UART_ENABLE_IT(&huart1, UART_IT_IDLE);//设置DMA接收HAL_UART_Receive_DMA(&huart1, (uint8_t *)rx_buff, 300);printf("uart_dma_receive init ok\r\n");while (1){/* USER CODE END WHILE *//* USER CODE BEGIN 3 */HAL_Delay(100);printf("rx_cnt=%d\r\n", rx_cnt);printf("rx_len=%d\r\n", rx_len);if(rx_len >0 ){			for(uint8_t i=0; i<rx_len; i++){printf("[%x]",rx_buff_read[i]);}rx_len = 0;}}

9. 函数解析

* 发送
1. DMA发送函数
HAL_UART_Transmit_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size);
2. 上面这个代码里调用
启动DMA传输并开启中断
HAL_DMA_Start_IT(huart->hdmatx, *(uint32_t *)tmp, (uint32_t)&huart->Instance->DR, Size);
3. 传输完成进入中断服务函数
HAL_DMA_IRQHandler(DMA_HandleTypeDef *hdma)
4. 进入回调函数
void HAL_UART_TxCpltCallback(UART_HandleTypeDef *huart)
* 接收
1. DMA接收函数
HAL_StatusTypeDef HAL_UART_Receive_DMA(UART_HandleTypeDef *huart, uint8_t *pData, uint16_t Size)
2. 上面这个代码里调用
启动DMA传输并开启中断
HAL_DMA_Start_IT(huart->hdmatx, *(uint32_t *)tmp, (uint32_t)&huart->Instance->DR, Size);
3. 接收完成进入中断服务函数
HAL_DMA_IRQHandler(DMA_HandleTypeDef *hdma)
4. 进入回调函数
void HAL_UART_RxCpltCallback(UART_HandleTypeDef *huart)
 //使能串UART2 IDLE中断
__HAL_UART_ENABLE_IT(&huart1, UART_IT_IDLE);//判断是否为空闲中断,若是空闲中断则进入空闲中断处理函数,空闲中断处理函数是自己写的
if(RESET != __HAL_UART_GET_FLAG(&huart1, UART_FLAG_IDLE))   //判断是否是空闲中断
{__HAL_UART_CLEAR_IDLEFLAG(&huart1);                     //清楚空闲中断标志(否则会一直不断进入中断)USAR_UART_IDLECallback(huart);                          //调用中断处理函数
}
//判断接收数据的长度
__HAL_DMA_GET_COUNTER(__HANDLE__)
此函数的功能:获取当前DMA通道传输中 receive_buff[BUFFER_SIZE]缓存还剩余多少个数据单元。这样就能算出这一帧数据到底接收了多少单元的数据(数据长度=缓存总长度-缓存剩余的长度),
length = BUFFER_SIZE - __HAL_DMA_GET_COUNTER(&hdma_usart1_rx);

参考链接

10. DMA循环接收

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/463698.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

Chromium127编译指南 Mac篇(一)- 环境准备详解

概述 在开源浏览器生态系统中&#xff0c;Chromium始终扮演着举足轻重的角色。作为Google Chrome的技术基石&#xff0c;它不仅支撑着全球最受欢迎的浏览器之一&#xff0c;更为众多定制化浏览器项目提供了坚实的基础。对于渴望探索浏览器技术深度&#xff0c;或计划开发自有浏…

【spark的集群模式搭建】spark集群之Yarn集群模式搭建(清晰明了的搭建流程)

文章目录 1、使用Anaconda部署Python2、上传、解压、重命名3、创建软连接&#xff08;如果在Standalone模式中创建有就删除&#xff09;4、配置spark环境变量5、修改spark-env.sh配置文件6、修改spark-defaults.conf 配置文件7、修改log4j.properties配置文件8、上传spark jar包…

h2 数据库命令行工具用法汇总

背景 h2 数据是个短小精悍的嵌入式数据库&#xff0c;纯 Java 实现&#xff0c;且非常小。 我们有一个比较底层的应用中就是用了 h2 数据库来存储应用的基础信息&#xff0c;这个数据库说起来比较容易。 本文总结实际项目中涉及到的 h2 的相关技术及问题。 控制台工具用法 …

再探“构造函数”(2)友元and内部类

文章目录 一. 友元‘全局函数’作友元‘成员函数’作友元‘类‘作友元 内部类 一. 友元 何时会用到友元呢&#xff1f; 当想让&#xff08;类外面的某个函数/其它的类&#xff09;访问 某个类里面的(私有或保护的)内容时&#xff0c;可以选择使用友元。 友元提供了一种突破&a…

告别枯燥数据!20种色彩缤纷的数据可视化图表任你选,轻松应对各种场景

我们每天都在和各种数据打交道&#xff0c;单纯的一串串数字&#xff0c;看着就头疼。如果数据不再是枯燥的表格&#xff0c;而是变成了色彩鲜艳的柱状图、线条流畅的折线图&#xff0c;或者是直观易懂的饼图&#xff0c;让用户一眼Get到重点&#xff0c;让老板为你的汇报方案鼓…

C++和OpenGL实现3D游戏编程【连载17】——着色器进阶(附源码)

🔥C++和OpenGL实现3D游戏编程【目录】 1、本节要实现的内容 在前面着色器初步一节我们了解了着色器的一些初步知识,通过顶点着色器和片段着色器显示出了一个彩色的立方体。我们这节课就来了解一些在着色器中显示纹理等一系列实用操作,同时了解一些进阶的图像渲染技术,比如…

散热器为什么要加风扇:【图文讲解】

前面我们聊到了TEC散热器中&#xff0c;TEC的工作原理&#xff0c;也大概聊了一下热的整个传递过程。TEC散热器在工作的时候&#xff0c;会产生冷热两个端面&#xff0c;核心工作原理是通电后TEC把冷端的热量搬移到热端。这样把TEC散热器的冷端放置在需要散热的器件表面&#x…

HO-XGBoost河马算法优化极限梯度提升树多变量回归预测(Matlab)

HO-XGBoost河马算法优化极限梯度提升树多变量回归预测&#xff08;Matlab&#xff09; 目录 HO-XGBoost河马算法优化极限梯度提升树多变量回归预测&#xff08;Matlab&#xff09;预测效果基本介绍程序设计参考资料 预测效果 基本介绍 Matlab实现HO-XGBoost多变量回归预测&…

Zookeeper 简介 | 特点 | 数据存储

1、简介 zk就是一个分布式文件系统&#xff0c;不过存储数据的量极小。 1. zookeeper是一个为分布式应用程序提供的一个分布式开源协调服务框架。是Google的Chubby的一个开源实现&#xff0c;是Hadoop和Hbase的重要组件。主要用于解决分布式集群中应用系统的一致性问题。 2. 提…

[5] 一篇文章教会你如何实现端口敲门

文章目录 1. 描述2. 基本原理3. 优点4. 缺点5. 实现过程6. firewall-cmd命令介绍7. 写到最后 1. 描述 端口敲门技术(Prot Knocking)技术&#xff0c;用于通过一系列预定的端口来动态地打开防火墙或访问特定服务甚至执行一小段任务&#xff0c;用于增强系统地安全性&#xff0c;…

TensorRT-LLM的k8s弹性伸缩部署方案

Scaling LLMs with NVIDIA Triton and NVIDIA TensorRT-LLM Using Kubernetes | NVIDIA Technical Blog 一共涉及4个k8s组件&#xff1a; 1. Deployment&#xff1a;跑起来N个pod&#xff1b;指定NVIDIA官方的triton&trt-llm的docker image&#xff0c;指定好model放在哪个…

Chainlit集成LlamaIndex实现知识库高级检索(HyDE查询重写转换)

检索原理 HyDEQueryTransform 是一种用于信息检索系统中的查询转换技术&#xff0c;它基于假设文档嵌入&#xff08;Hypothetical Document Embeddings&#xff0c;简称HyDE&#xff09;的概念&#xff0c;旨在通过生成假设文档来改善查询与文档之间的语义对齐&#xff0c;进而…

使用Markdown编写适用于GitHub的README.md文件的目录结构

文章目录 [toc] 顶部1. 使用[TOC]自动生成2. VSCode中的插件3. 手搓目录目录相关资料本文相关代码一、概述1.1 基本概念1.2 两种处理模型&#xff08;1&#xff09;微批处理&#xff08;2&#xff09;持续处理 1.3 Structured Streaming和Spark SQL、Spark Streaming关系 二、编…

[ shell 脚本实战篇 ] 编写恶意程序实现需求(恶意程序A监测特定目录B出现特定文件C执行恶意操作D-windows)

&#x1f36c; 博主介绍 &#x1f468;‍&#x1f393; 博主介绍&#xff1a;大家好&#xff0c;我是 _PowerShell &#xff0c;很高兴认识大家~ ✨主攻领域&#xff1a;【渗透领域】【数据通信】 【通讯安全】 【web安全】【面试分析】 &#x1f389;点赞➕评论➕收藏 养成习…

攻克数字工具(GKData)在推动 AI 发展中的关键作用

摘要&#xff1a;本文深入探讨了攻克数字工具&#xff08;GKData&#xff09;对人工智能&#xff08;AI&#xff09;发展的重要推动作用&#xff0c;同时阐述了人工智能技术的发展历程、现状、应用领域和前景。分析了 GKData 在数据处理、模型训练与优化、算法创新等方面为 AI …

Golang文件操作

1.文件介绍&#xff1a;文件是数据源&#xff0c;主要作用是保存数据 2.文件在程序中是以流的形式来操作的 对文件的操作主要用File(os包)结构体来实现 文件的基本操作 1&#xff09;打开一个文件进行读操作&#xff1a; os.Open(name string)(*File,error) 2&#xff09;关…

WebSocket的理解与应用

WebSocket的理解与应用 一、是什么二、特点1、全双工2、二进制帧3、协议名4、握手5、优点 三、应用场景 一、是什么 WebSocket&#xff0c;是一种网络传输协议&#xff0c;位于OSI模型的应用层。可在单个TCP连接上进行全双工通信&#xff0c;能更好的节省服务器资源和带宽并达…

【补题/atccoder】Toyota Programming Contest 2024#7(AtCoder Beginner Contest 362)

A、买笔 思路&#xff1a; 输入红绿蓝三只笔价格&#xff0c;再输入不喜欢颜色&#xff0c; 输出除不喜欢颜色笔以外最低价格 代码如下&#xff1a; #include <iostream> #include <algorithm> using namespace std;int main() {int r, g, b;cin >> r >&…

【含开题报告+文档+源码】基于Web的房地产销售网站的设计与实现

开题报告 随着经济的发展和城市化进程的加速&#xff0c;房地产市场逐渐成为人们关注的焦点。然而&#xff0c;传统的房地产销售模式存在很多问题&#xff0c;如信息不透明、交易过程繁琐、无法满足个性化需求等。这些问题不仅影响了消费者的购房体验&#xff0c;也制约了房地…

网络层3——IP数据报转发的过程

目录 一、基于终点的转发 1、理解 2、IP数据报转发过程 二、最长前缀匹配 1、理解 2、主机路由 3、默认路由 三、二叉线索查找 一、基于终点的转发 1、理解 理解什么叫终点转发 IP数据报的传递&#xff0c;交给路由器后 可不可以做到直接发送给目的主机呢&#xff1f;…