使用DJL和PaddlePaddle的口罩检测详细指南

使用DJL和PaddlePaddle的口罩检测详细指南

完整代码

该项目利用DJL和PaddlePaddle的预训练模型,构建了一个口罩检测应用程序。该应用能够在图片中检测人脸,并将每张人脸分类为“戴口罩”或“未戴口罩”。我们将深入分析代码的每个部分,以便清晰了解每一步。

代码关键组件

  1. 缩放比例和置信度阈值配置

    • scale:控制图像缩放比例;值越小检测速度越快,但精度会降低。可根据应用场景的精度要求调整。
    • threshold:设定检测结果的最低置信度,用于过滤低置信度的检测结果。
  2. 人脸和口罩检测模型的初始化

    • 初始化FaceDetection用于定位人脸区域,FaceMaskDetect则用于对检测出的人脸区域进行口罩状态的分类。
  3. 模型加载和预测

    • 使用DJL的ZooModel类加载人脸检测和口罩分类模型。人脸检测模型识别图像中的人脸区域,分类模型判断每张人脸是否佩戴口罩。
    • 遍历资源目录中的所有图像文件,分别进行检测和分类,并将结果保存和记录。

优化后的代码讲解

以下是代码的改进版本,加入了详细的注释来说明每一步的操作:

@SneakyThrows
@Test
public void test1() {// 设置人脸检测的缩放比例和置信度阈值float scale = 0.5f;  // 缩小图像尺寸,提升检测速度float threshold = 0.7f;  // 仅保留置信度大于0.7的检测结果// 初始化人脸检测和口罩检测模型FaceDetection faceDetection = new FaceDetection();FaceMaskDetect faceMaskDetect = new FaceMaskDetect();try (// 加载人脸检测模型ZooModel<Image, DetectedObjects> model = ModelZoo.loadModel(faceDetection.criteria(scale, threshold));Predictor<Image, DetectedObjects> faceDetector = model.newPredictor();// 加载口罩分类模型ZooModel<Image, Classifications> classifyModel = ModelZoo.loadModel(faceMaskDetect.criteria());Predictor<Image, Classifications> classifier = classifyModel.newPredictor()) {// 遍历资源目录中的图像文件for (File file : new File("src/test/resources").listFiles()) {// 读取并处理图像BufferedImage img = ImageIO.read(file);Image image = ImageFactory.getInstance().fromImage(img);// 使用人脸检测和口罩分类器进行预测DetectedObjects detections = faceMaskDetect.predict(faceDetector, classifier, image);// 保存检测结果,绘制边框并记录到指定目录ImageUtils.saveBoundingBoxImage(image, detections, file.getName(), "build/output");// 日志输出检测结果logger.info("{}", detections);}}
}

各步骤详细解读
Step 1: 设置检测参数
scale参数控制图像缩放的比率。缩小图像的尺寸会提升检测速度,但可能会损失一些精度。该值可以根据需求灵活调整。
threshold参数设定了最小置信度,用于过滤低置信度的检测结果。例如,0.7的阈值意味着仅保留置信度在70%以上的结果。
Step 2: 初始化检测模型
这里分别初始化FaceDetection和FaceMaskDetect两个对象。FaceDetection对象用于人脸检测,即识别图像中的人脸位置。FaceMaskDetect对象则用于口罩检测,即对识别出的人脸区域进一步分类。

Step 3: 加载模型和初始化预测器
ModelZoo.loadModel(faceDetection.criteria(scale, threshold))通过criteria加载人脸检测模型,并将其转化为DJL的ZooModel对象。
Predictor<Image, DetectedObjects> faceDetector = model.newPredictor()创建一个Predictor,用于接收Image对象并返回人脸检测的DetectedObjects。
同样,口罩分类模型通过faceMaskDetect.criteria()加载,并使用Predictor<Image, Classifications>进行分类预测。
Step 4: 遍历图像文件
使用listFiles()方法遍历指定目录下的所有图像文件,以便逐个进行人脸检测和口罩分类。

Step 5: 执行人脸检测和口罩分类
faceMaskDetect.predict(faceDetector, classifier, image)方法同时使用人脸检测器faceDetector和分类器classifier,首先检测人脸位置,然后在检测到的人脸区域内进行口罩状态的分类。
Step 6: 保存检测结果
使用ImageUtils.saveBoundingBoxImage()方法,将检测结果绘制到图像上,并保存到build/output目录下。该方法会在图片上标注检测框及口罩状态,便于直观观察检测效果。

Step 7: 输出检测结果
使用日志记录检测结果,包含分类结果(“MASK” 或 “NO MASK”)、置信度、检测框的坐标和尺寸等信息。控制台示例输出如下:

运行效果示例

执行该代码后,在控制台中可以看到每张图片的检测结果,包括人脸位置和是否佩戴口罩的分类信息。以下是示例输出:

[INFO ] - [class: "MASK", probability: 0.95524, bounds: [x=0.415, y=0.234, width=0.319, height=0.425]
]
[INFO ] - [class: "MASK", probability: 0.99275, bounds: [x=0.274, y=0.226, width=0.412, height=0.523]
]
[INFO ] - [class: "MASK", probability: 0.99931, bounds: [x=0.489, y=0.289, width=0.234, height=0.443]
]
[INFO ] - [class: "NO MASK", probability: 0.99916, bounds: [x=0.489, y=0.311, width=0.171, height=0.395]
]
[INFO ] - [
]
[INFO ] - [class: "MASK", probability: 0.99964, bounds: [x=0.190, y=0.187, width=0.309, height=0.538]
]

检测效果图示例

以下展示了原图和检测后的效果图:

原图检测图
mask3mask3
mask6mask6

总结与优化建议

该系统能够精准地检测人脸并判断口罩佩戴状态,可应用于各类检测场景。可以根据实际需求,调整缩放比例scale和置信度阈值threshold以平衡速度和精度。
完整代码

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/463735.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【MySQL】架构

1. MySQL架构基本理解 与餐厅就餐类比理解 每次数据库查询就像一次餐厅服务 应用程序发出查询相当于点菜MySQL解析和执行查询&#xff0c;后厨根据订单制作食物事务管理保证数据的一致性&#xff0c;类似于结账的时候保证账单正确查询的时候考虑优化器&#xff0c;类似于厨师选…

Linux服务器或Linux计算机设置不记录历史命令

1.设置环境变量 打开命令终端&#xff0c;编辑.bashrc文件中&#xff0c;修改HISTSIZE和HISTFILESIZE都为0 sudo nano ~/.bashrcfor setting history length see HISTSIZE and HISTFILESIZE in bash(1) HISTSIZE0 HISTFILESIZE0 2.生效 source ~/.bashrc 3.验证 cat ./b…

基于Spring Boot的中小型制造企业质量管理系统设计与实现,LW+源码+讲解

摘 要 信息数据从传统到当代&#xff0c;是一直在变革当中&#xff0c;突如其来的互联网让传统的信息管理看到了革命性的曙光&#xff0c;因为传统信息管理从时效性&#xff0c;还是安全性&#xff0c;还是可操作性等各个方面来讲&#xff0c;遇到了互联网时代才发现能补上自…

动手学深度学习65 注意力分数

1. 注意力分数 好处&#xff1a;k q v的长度都可以不一样。 2. 代码 3. QA 1 画出注意力权重&#xff0c;对任何一行query&#xff0c;给每一对key-value多少注意力【哪对key-value更重要】 2 语义上的区别 3 是的。一元版本换成向量版本 4 通常用相似度做注意力分数&…

从新手到专家:7款电脑平面设计软件评测

平面设计在时尚、广告等多个领域扮演着重要角色&#xff0c;而创作出独特且富有创意的设计作品则需要依赖优秀的电脑平面设计软件。市场上的电脑平面设计软件众多&#xff0c;每款软件都有其独到之处。本文将为你推荐几款值得关注的电脑平面设计软件&#xff0c;并分析它们的特…

HTML 块级元素和内联(行内)元素详解

在 HTML 中,元素根据它们在页面中的表现方式分为两类:块级元素 和 内联元素(行内元素)。了解块级元素和内联元素的特性与使用方法,是掌握HTML开发的重要基础。本文将深入探讨这两类元素的特点及其在实际开发中的应用。 文章目录 一、块级元素1.1 块级元素是什么?1.2 块级…

微信支付宝小程序SEO优化的四大策略

在竞争激烈的小程序市场中&#xff0c;高搜索排名意味着更多的曝光机会和潜在用户。SEO即搜索引擎优化&#xff0c;对于小程序而言&#xff0c;主要指的是在微信小程序商店中提高搜索排名&#xff0c;从而增加曝光度和用户访问量。有助于小程序脱颖而出&#xff0c;提升品牌知名…

内存马浅析

之前在jianshu上写了很多博客&#xff0c;但是安全相关的最近很多都被锁了。所以准备陆陆续续转到csdn来。内存马前几年一直是个很热门的漏洞攻击手段&#xff0c;因为相对于落地的木马&#xff0c;无文件攻击的内存马隐蔽性、持久性更强&#xff0c;适用的漏洞场景也更多。 J…

【网络】套接字编程——TCP通信

> 作者&#xff1a;დ旧言~ > 座右铭&#xff1a;松树千年终是朽&#xff0c;槿花一日自为荣。 > 目标&#xff1a;TCP网络服务器简单模拟实现。 > 毒鸡汤&#xff1a;有些事情&#xff0c;总是不明白&#xff0c;所以我不会坚持。早安! > 专栏选自&#xff1a;…

CytoSPACE·空转和单细胞数据的高分辨率比对

1. 准备输入文件&#xff0c;需要四个文件&#xff0c;所有文件都应以制表符分隔的表格输入格式 (.txt) 提供。 a. scRNA-seq 基因表达文件 矩阵必须是基因&#xff08;行&#xff09;乘以细胞&#xff08;列&#xff09;。 第一行必须包含单个细胞 ID&#xff0c;第一列必须…

模型 定位地图

系列文章 分享 模型&#xff0c;了解更多&#x1f449; 模型_思维模型目录。心智导航现实的空间图。 1 定位地图模型的应用 1.1 小玉的职业定位与发展规划 小玉&#xff0c;24岁&#xff0c;市场营销专业本科毕业生&#xff0c;有半年汽车销售实习经历。毕业后&#xff0c;她…

规划误差降低27%,碰撞率降低33%Senna: 大规模视觉-语言模型与端到端自动驾驶相结合

Abstract 端到端自动驾驶在大规模数据中展示了强大的规划能力&#xff0c;但在复杂、罕见的场景中仍然因常识有限而表现不佳。相比之下&#xff0c;大型视觉语言模型&#xff08;LVLMs&#xff09;在场景理解和推理方面表现出色。前进的方向在于融合两者的优势。以往利用LVLMs…

深入浅出 | 谈谈MNN GPU性能优化策略

MNN(Mobile Neural Network)是一个高性能、通用的深度学习框架&#xff0c;支持在移动端、PC端、服务端、嵌入式等各种设备上高效运行。MNN利用设备的GPU能力&#xff0c;全面充分“榨干”设备的GPU资源&#xff0c;来进行深度学习的高性能部署与训练。 概述 MNN自开源以来&a…

UE 引入 IOS framework库的坑

一、我明明已经把framework库进行签名的却在 上传到开发者后台时一直报错 90034 签章遗失 或者 未签 这个问题我最近遇到 极其坑爹 我是这个情况 这是我的framework库的目录 关键就在这了 多出了这个文件 就影响了 上传到开发者后台 就报错 90034 将其删除就好 &…

Rust 力扣 - 3090. 每个字符最多出现两次的最长子字符串

文章目录 题目描述题解思路题解代码题目链接 题目描述 题解思路 本题使用滑动窗口进行求解&#xff0c;使用左指针和右指针分别表示窗口的左边界和窗口的右边界&#xff0c;使用哈希表记录窗口内的字符及其对应数量 我们首先向右移动右指针&#xff0c;将字符加入到哈希表中进…

Spring Boot框架下的信息学科平台系统开发实战

摘要 随着信息技术在管理上越来越深入而广泛的应用&#xff0c;管理信息系统的实施在技术上已逐步成熟。本文介绍了基于保密信息学科平台系统的开发全过程。通过分析基于保密信息学科平台系统管理的不足&#xff0c;创建了一个计算机管理基于保密信息学科平台系统的方案。文章介…

利用EasyExcel实现简易Excel导出

目标 通过注解形式完成对一个方法返回值的通用导出功能 工程搭建 pom <?xml version"1.0" encoding"UTF-8"?> <project xmlns"http://maven.apache.org/POM/4.0.0" xmlns:xsi"http://www.w3.org/2001/XMLSchema-instance&qu…

练习LabVIEW第三十二题

学习目标&#xff1a; 刚学了LabVIEW&#xff0c;在网上找了些题&#xff0c;练习一下LabVIEW&#xff0c;有不对不好不足的地方欢迎指正&#xff01; 第三十二题&#xff1a; 利用labview elapsed time(已用时间)定时设计输出一个方波 开始编写&#xff1a; 前面板放置一…

桑基图在医学数据分析中的更复杂应用示例

桑基图&#xff08;Sankey Diagram&#xff09;能够有效地展示复杂的流动关系&#xff0c;特别适合用于医学数据分析中的多种转归和治疗路径的可视化。接下来&#xff0c;我们将构建一个稍微复杂的示例&#xff0c;展示不同疾病患者在治疗过程中的流动&#xff0c;以及他们的治…

Java毕业设计-基于微信小程序的校园二手物品交易系统的实现(V2.0)

博主介绍&#xff1a;✌stormjun、8年大厂程序员经历。全网粉丝15w、csdn博客专家、掘金/华为云/阿里云/InfoQ等平台优质作者、专注于Java技术领域和毕业项目实战✌ &#x1f345;文末获取源码联系&#x1f345; &#x1f447;&#x1f3fb; 精彩专栏推荐订阅&#x1f447;&…