【基于Zynq FPGA对雷龙SD NAND的测试】

一、SD NAND 特征

1.1 SD 卡简介

雷龙的 SD NAND 有很多型号,在测试中使用的是 CSNP4GCR01-AMW 与 CSNP32GCR01-AOW。芯片是基于 NAND FLASH 和 SD 控制器实现的 SD 卡。具有强大的坏块管理和纠错功能,并且在意外掉电的情况下同样能保证数据的安全。

其特点如下:

  • 接口支持 SD2.0 2 线或 4 线;

  • 电压支持:2.7V-3.6V;

  • 默认模式: 可变时钟速率 0 - 25MHz,高达 12.5 MB/s 的接口速度 (使用 4 条并行数据线)

  • 高速模式: 可变时钟速率 0 - 50MHz,高达 25 MB/s 的接口速度 (使用 4 条并行数据线)

  • 工作温度:-40°C ~ +85°C

  • 存储温度:-55°C ~ +125°C

  • 待机电流小于 250uA

  • 修正内存字段错误;

  • 内容保护机制——符合 SDMI 最高安全标准

  • SDNAND 密码保护 (CMD42 - LOCK_UNLOCK)

  • 采用机械开关的写保护功能

  • 内置写保护功能 (永久和临时)

  • 应用程序特定命令

  • 舒适擦除机制

该 SD 卡支持 SDIO 读写和 SPI 读写,最高读写速度可达 25MB/s,实际读写速度要结合 MCU 和接口情况实测获得。通常在简单嵌入式系统并对读写速度要求不高的情况下,会使用 SPI 协议进行读写。但不管使用 SDIO 还是 SPI 都需要符合相关的协议规范,才能建立相应的文件系统;

1.2 SD 卡 Block 图

该 SD 卡封装为 LGA-8;引脚分配与定义如下;在这里插入图片描述:

image-20241106234505040

二、SD 卡样片

与样片同时寄来的还有转接板,转接板将 LGA-8 封装的芯片转接至 SD 卡封装,这样只需将转接板插入 SD 卡卡槽即可使用。

在这里插入图片描述:

image-20241106234515418

三、Zynq 测试平台搭建

  • 测试平台为 Xilinx 的 Zynq 7020 FPGA 芯片;

  • 板卡:Digilent Zybo Z7

  • Vivado 版本:2018.3

  • 文件系统:FATFS

  • SD 卡接口:SD2.0

3.1 测试流程

本次测试主要针对 4G 和 32G 两个不同容量的 SD 卡,在 Zynq FPGA 上搭建 SD 卡读写回路,从而对 SD 卡读写速度进行测试,并检验读写一致性;

测试流程:

进入测试程序前,首先会对 SD 卡初始化并初始化建立 FATFS 文件系统,随后进入测试 SD 卡测试程序,在测试程序中,会写入一定大小的文件,然后对写入文件的时间进行测量,得到写入时间;然后再将写入的文件读出,测量获得读出时间,并将读出数据与写入数据相比较,检测是否读写出错。

通过写入时间、读出时间可计算得到写入速度、读出速度;将以上过程重复 100 次并打印报告。

image-20241106234559529

3.2 SOC 搭建

硬件搭建框图如下,我们在本次系统中使用 PS 端的 SDIO 接口来驱动 SD NAND 芯片,并通过 UART 向 PC 打印报告;

PL 端的硬件搭建也很简单,只需一个 Timer 定时器来做时间测量;

image-20241106234609128

我们直接使用 Zybo 板卡文件创建一个工程,工程会将 Zybo 具有的硬件资源配置好;

image-20241106234649694

首先点击 setting->IP->Repository->+;添加 Timer IP 核的路径,Timer IP 核会在工程中给出;

image-20241106234708383

点击 Create Block Design 创建 BD 工程

image-20241106234719321

在创建的过程中添加 Zynq 内核;

image-20241106234728015

由于我们使用了板卡文件,所以内核 IP 是配置好的,我们只需稍作修改即可,如果是其他板卡,则需要自行配置 DDR 等配置;

双击内核 IP,点击 Clock Configuration->PL Fabric Clocks,将 FCLK_CLK0 的时钟频率修改为 100Mhz

image-20241106234745270

添加 TimerA IP;

image-20241106235212326

依次点击上方的自动设计,完成 SOC 搭建;

image-20241106235221986

点击 BD 设计,并创建顶层文件

image-20241106235231159

生成比特流文件;

image-20241106235241703

在生成比特流文件后,将其导入 SDK;

点击 Export->Export Hardware,导出硬件;然后点击 Launch SDK 打开 SDK 进行软件设计;

image-20241106235309720

image-20241106235320866

四、软件搭建

在 SDK 中新建一个空白工程;

点击 file -> new -> Application project;

image-20241106235332805

在新建的过程中创建一个 main.c 文件,并在里面编写测试程序如下:

在每次读写开始前,通过 TimerA0_start() 函数开始计时,在读写结束后可以通过 TimerA0_stop() 结束计时,从而测得消耗时间。

相应的 Timer 驱动函数在 user/TimerA_user.c 中定义;

#include "xparameters.h" /_ SDK generated parameters _/
#include "xsdps.h" /_ SD device driver _/
#include "xil_printf.h"
#include "ff.h"
#include "xil_cache.h"
#include "xplatform_info.h"
#include "time.h"
#include "../user/headfile.h"
#define PACK_LEN 32764
static FIL fil; /_ File object _/
static FATFS fatfs;
static char FileName[32] = "Test.txt";
static char \*SD_File;
char DestinationAddress[PACK_LEN] ;
char txt[1024];
char test_buffer[PACK_LEN];
void TimerA0_init()
{TimerA_reset(TimerA0);//reset timerA deviceTimerA_Set_Clock_Division(TimerA0,100);//divide clock as 100000000/100 = 1MhzTimerA_Stop_Counter(TimerA0);//stop timerA
}
void TimerA0_start()
{TimerA_SetAs_CONTINUS_Mode(TimerA0);
}
void TimerA0_stop()
{TimerA_Stop_Counter(TimerA0);
}
uint32 SDCard_test()
{uint8 Res;uint32 NumBytesRead;uint32 NumBytesWritten;uint32 BuffCnt;uint8 work[FF_MAX_SS];uint32 take_time=0;uint32 speed = 0;uint32 test_time = 0;uint32 w_t=0;uint32 r_t=0;float wsum = 0;float rsum = 0;TCHAR *Path = "0:/";for(int i=0;i<PACK_LEN;i++){test_buffer[i] = 'a';}Res = f_mount(&fatfs, Path, 0);if (Res != FR_OK) {return XST_FAILURE;}Res = f_mkfs(Path, FM_FAT32, 0, work, sizeof work);if (Res != FR_OK) {return XST_FAILURE;}SD_File = (char *)FileName;Res = f_open(&fil, SD_File, FA_CREATE_ALWAYS | FA_WRITE | FA_READ);if (Res) {return XST_FAILURE;}Res = f_lseek(&fil, 0);if (Res) {return XST_FAILURE;}while(1){TimerA_reset(TimerA0);TimerA0_start();Res = f_write(&fil, (const void*)test_buffer, PACK_LEN,&NumBytesWritten);TimerA0_stop();take_time = TimerA_Read_Counter_Register(TimerA0);w_t+=take_time;xil_printf("--------------------------------\n");xil_printf("take time:%d us\n",take_time);speed = PACK_LEN*(1000000/((float)(take_time)));sprintf(txt,"write speed:%.2f MB/s\n",(float)(speed)/1024/1024);wsum = wsum+speed;xil_printf(txt);xil_printf("--------------------------------\n");if (Res) {return XST_FAILURE;}Res = f_lseek(&fil, 0);if (Res) {return XST_FAILURE;}TimerA_reset(TimerA0);TimerA0_start();Res = f_read(&fil, (void*)DestinationAddress, PACK_LEN,&NumBytesRead);TimerA0_stop();take_time = TimerA_Read_Counter_Register(TimerA0);r_t+=take_time;xil_printf("--------------------------------\n");xil_printf("take time:%d us\n",take_time);speed = PACK_LEN*(1000000/((float)(take_time)));sprintf(txt,"read speed:%.2f MB/s\n",(float)(speed)/1024/1024);rsum = rsum+speed;xil_printf(txt);xil_printf("--------------------------------\n");if (Res) {return XST_FAILURE;}for(BuffCnt = 0; BuffCnt < PACK_LEN; BuffCnt++){if(test_buffer[BuffCnt] != DestinationAddress[BuffCnt]){xil_printf("%dno",BuffCnt);return XST_FAILURE;}}xil_printf("test num:%d data check right!\n",test_time+1);test_time++;if(test_time==100){sprintf(txt,"Total write: %.2f KB,Take time:%.2f ms, Write speed:%.2f MB/s\n",PACK_LEN*100/1024.0,w_t/100.0/1000.0,wsum/100/1024/1024);xil_printf(txt);sprintf(txt,"Total read: %.2f KB,Take time:%.2f ms, Read speed:%.2f MB/s\n",PACK_LEN*100/1024.0,r_t/100.0/1000.0,rsum/100/1024/1024);xil_printf(txt);Res = f_close(&fil);if (Res) {return XST_FAILURE;}return 0;}}
}
int main(void)
{TimerA0_init();SDCard_test();xil_printf("finish");return 0;
}

五、测试结果

经测试,两种型号的芯片读写速度如下图表所示。

其 SD NAND 的读写速度随着读写数据量的增加而增加,并且读速率大于写速率,这符合 SD 卡的特性;

对比两种型号 SD NAND 芯片,发现 CSNP32GCR01-AOW 型号具有更高的读写速度;

六、总结

本来打算拿这些样片去试试信息安全领域是否有所应用,但发现其似乎内置了复位或初始化,导致无法提取上电时的不确定值,故无法提取该 SD NAND 的物理不可克隆特性,所以这方面的测试无法进行;

对于芯片正常读写的测试结果,还是很让人满意的,芯片的价格也很合理。并且 LGA-8 封装更适合无卡槽的嵌入式开发板设计,在一定的应用领域有着简化硬件设计、减小硬件面积的功能。

官网体验

最后贴上测试工程的链接,还迎复现实验: https://gitee.com/gewenjie_host/sd_-nand_-zynq700_test

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/465802.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

【NOIP提高组】引水入城

【NOIP提高组】引水入城 &#x1f490;The Begin&#x1f490;点点关注&#xff0c;收藏不迷路&#x1f490; 在一个遥远的国度&#xff0c;一侧是风景秀美的湖泊&#xff0c;另一侧则是漫无边际的沙漠。该国的行政 区划十分特殊&#xff0c;刚好构成一个N行M列的矩形&#xff…

鸿蒙开发:arkts 如何读取json数据

为了支持ArkTS语言的开发&#xff0c;华为提供了完善的工具链&#xff0c;包括代码编辑器、编译器、调试器、测试工具等。开发者可以使用这些工具进行ArkTS应用的开发、调试和测试。同时&#xff0c;华为还提供了DevEco Studio这一一站式的开发平台&#xff0c;为运行在Harmony…

OpenCV视觉分析之目标跟踪(11)计算两个图像之间的最佳变换矩阵函数findTransformECC的使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 根据 ECC 标准 78找到两幅图像之间的几何变换&#xff08;warp&#xff09;。 该函数根据 ECC 标准 ([78]) 估计最优变换&#xff08;warpMatri…

【2024最新版Kotlin教程】Kotlin第一行代码系列第五课-类继承,抽象类,接口

【2024最新版Kotlin教程】Kotlin第一行代码系列第五课-类继承&#xff0c;抽象类&#xff0c;接口 为什么要有继承呢&#xff0c;现实中也是有继承的&#xff0c;对吧&#xff0c;你继承你爸的遗产&#xff0c;比如你爸建好了一个房子&#xff0c;儿子继承爸&#xff0c;就得了…

iOS用rime且导入自制输入方案

iPhone 16 的 cantonese 只能打传统汉字&#xff0c;没有繁简转换&#xff0c;m d sh d。考虑用「仓」输入法 [1] 使用 Rime 打字&#xff0c;且希望导入自制方案 [2]。 仓输入法有几种导入方案的方法&#xff0c;见 [3]&#xff0c;此处记录 wifi 上传法。准备工作&#xff1…

基于Zynq FPGA的雷龙SD NAND存储芯片性能测试

文章目录 前言一、SD NAND特征1.1 SD卡简介1.2 SD卡Block图 二、SD卡样片三、Zynq测试平台搭建3.1 测试流程3.2 SOC搭建 四、软件搭建五、测试结果六、总结 前言 随着嵌入式系统和物联网设备的快速发展&#xff0c;高效可靠的存储解决方案变得越来越重要。雷龙发展推出的SD NA…

【动态规划 数学】2745. 构造最长的新字符串|1607

本文涉及知识点 C动态规划 数学 LeetCode2745. 构造最长的新字符串 给你三个整数 x &#xff0c;y 和 z 。 这三个整数表示你有 x 个 “AA” 字符串&#xff0c;y 个 “BB” 字符串&#xff0c;和 z 个 “AB” 字符串。你需要选择这些字符串中的部分字符串&#xff08;可以全…

【Linux驱动开发】timer库下的jiffies时间戳和延时驱动编写

【Linux驱动开发】timer库下的jiffies时间戳和延时驱动编写 gitee地址&#xff1a; https://gitee.com/Mike_Zhou_Admin/Linux_Driver_Timestamp_Driver/更新以gitee为准 文章目录 timer库时间戳函数延时函数驱动代码应用测试附录&#xff1a;嵌入式Linux驱动开发基本步骤开发…

了解云计算工作负载保护的重要性及必要性

云计算de小白 云计算技术的快速发展使数据和应用程序安全成为一种关键需求&#xff0c;而不仅仅是一种偏好。随着越来越多的客户公司将业务迁移到云端&#xff0c;保护他们的云工作负载&#xff08;指所有部署的应用程序和服务&#xff09;变得越来越重要。云工作负载保护&…

C语言 循环高级

时间&#xff1a;2024.11.6 一、学习内容 1、无限循环 无限循环&#xff1a;循环永远停不下来 注意点&#xff1a;无限循环因为永远停不下来&#xff0c;所以下面不能再写其他的代码了 2、break 跳转控制语句&#xff1a; 在循环的过程中&#xff0c;跳到其他语句上执行 #…

易语言模拟真人动态生成鼠标滑动路径

一.简介 鼠标轨迹算法是一种模拟人类鼠标操作的程序&#xff0c;它能够模拟出自然而真实的鼠标移动路径。 鼠标轨迹算法的底层实现采用C/C语言&#xff0c;原因在于C/C提供了高性能的执行能力和直接访问操作系统底层资源的能力。 鼠标轨迹算法具有以下优势&#xff1a; 模拟…

CSS学习之Grid网格布局基本概念、容器属性

网格布局 网格布局&#xff08;Grid&#xff09;是将网页划分成一个个网格单元&#xff0c;可任意组合不同的网格&#xff0c;轻松实现各种布局效果&#xff0c;也是目前CSS中最强大布局方案&#xff0c;比Flex更强大。 基本概念 容器和项目 当一个 HTML 元素将 display 属性…

聊一聊Elasticsearch的索引的分片分配机制

1、什么是分片分配 分片分配是由ES主节点将索引分片移动到ES集群中各个节点上的过程。 该过程尽量保证&#xff0c;同一个索引的分片尽量分配到更多的节点上&#xff0c;以此来达到读写索引的时候可以利用更多硬件资源的效果。 在分配过程当中&#xff0c;也不能将某个主分片…

springboot的增删改查商城小实践(b to c)

首先准备一张表&#xff0c;根据业务去设计表 订单编号是参与业务的&#xff0c;他那订单编号里面是有特殊意义的&#xff0c;比如说像什么一些年月日什么的&#xff0c;一些用户的ID都在那编号里面呢&#xff1f;不能拿这种东西当主件啊 根据数据量去决定数据类型 价格需要注意…

Ubuntu 安装 RTL8811cu 网卡驱动

一、支持的网卡 RTL8811AU、RTL8811CU、RTL8821AU、RTL8821CU 二、下载驱动 github&#xff1a;https://github.com/brektrou/rtl8821CU 直接下载zip源码即可 三、安装驱动 sudo su -i #切换到root用户 apt-get update #更新安装源 apt-get install -y dkms …

解锁炎症和肿瘤免疫治疗新靶点:TREM1&TREM2

前 言 TREM家族属于细胞表面受体&#xff0c;介导调控炎症反应&#xff0c;现已成为癌症、神经退行性疾病以及炎症性疾病等多种疾病最有潜力的药物靶点。截至2023年6月&#xff0c;有5项FDA注册的临床前或临床试验正在进行中&#xff0c;有3项是TREM2在阿尔茨海默症&#xff…

【Unity】Unity拖拽在Android设备有延迟和卡顿问题的解决

一、介绍 在制作Block类游戏时&#xff0c;其核心的逻辑就是拖拽方块放入到地图中&#xff0c;这里最先想到的就是Unity的拖拽接口IDragHandler,然后通过 IPointerDownHandler, IPointerUpHandler 这两个接口判断按下和松手&#xff0c;具体的实现逻辑就是下面 public void On…

Postman断言与依赖接口测试详解!

在接口测试中&#xff0c;断言是不可或缺的一环。它不仅能够自动判断业务逻辑的正确性&#xff0c;还能确保接口的实际功能实现符合预期。Postman作为一款强大的接口测试工具&#xff0c;不仅支持发送HTTP请求和接收响应&#xff0c;还提供了丰富的断言功能&#xff0c;帮助测试…

NewStar CTF 2024 misc WP

decompress 压缩包套娃&#xff0c;一直解到最后一层&#xff0c;将文件提取出来 提示给出了一个正则&#xff0c;按照正则爆破密码&#xff0c;一共五位&#xff0c;第四位是数字 ^([a-z]){3}\d[a-z]$ 一共就五位数&#xff0c;直接ARCHPR爆破&#xff0c;得到密码 xtr4m&…

鸿蒙开发案例:七巧板

【1】引言&#xff08;完整代码在最后面&#xff09; 本文介绍的拖动七巧板游戏是一个简单的益智游戏&#xff0c;用户可以通过拖动和旋转不同形状的七巧板块来完成拼图任务。整个游戏使用鸿蒙Next框架开发&#xff0c;利用其强大的UI构建能力和数据响应机制&#xff0c;实现了…