二分查找习题篇(上)

二分查找习题篇(上)

1.二分查找

题目描述:

给定⼀个 n 个元素有序的(升序整型数组 nums 和一个目标值 target ,写一个函数搜索 nums 中的 target,如果目标值存在返回下标,否则返回 -1。

示例 1:

​输入: nums = [-1,0,3,5,9,12], target = 9

​输出: 4

解释: 9 出现在 nums 中并且下标为 4

示例 2:

输入: nums = [-1,0,3,5,9,12], target = 2

输出: -1

解释: 2 不存在 nums 中因此返回 -1

提示:

你可以假设 nums 中的所有元素是不重复的。

n 将在 [1, 10000]之间。

nums 的每个元素都将在 [-9999, 9999]之间。

解法一:暴力解法

从前往后枚举每一个元素,将其与目标值进行对比。

时间复杂度最差为O(N)。

解法二:二分查找算法

当数组具有“二段性”时,我们就可以用二分查找算法。

算法思路:

  1. 定义 left , right 指针,分别指向数组的左右区间。

  2. 当left<=right时,下列一直循环:

​ 找到待查找区间的中间点 mid ,找到之后分三种情况讨论:

  • arr[mid] == target:返回 mid 的值;
  • arr[mid] > target:让 right = mid - 1,在 [left, right] 的区间继续查找 ,重复 2 过程;
  • arr[mid] < target:让 left = mid + 1, 在 [left, right] 的区间继续查找,重复 2 过程;
  1. 当left>right时,说明整个区间都没有这个数,返回 -1 。

细节问题:

1.循环结束的条件

当left>right

2.为什么是正确的?

二分查找是从暴力解法优化而来的

3.时间复杂度

1次——>n/21=n/2

2次——>n/22=n/4

3次——>n/23=n/8

…次——>…

x次——>n/2x=1(当left==right,找到要找的元素时)

2x=n——>x=logN

因此,二分查找的时间复杂度是logN.

代码实现:

class Solution {
public:int search(vector<int>& nums, int target) {int left=0,right=nums.size()-1;while(left<=right)//每次查找的元素都是未知的,所以要取等号{int mid=left+(right-left)/2;  //防止溢出if(nums[mid]>target) right=mid-1;else if(nums[mid]<target) left=mid+1;else return mid;}return -1;}
};

朴素二分模版:

​ while(left<=right)//每次查找的元素都是未知的,所以要取等号
​ {
​ int mid=left+(right-left)/2; //防止溢出,替换成left+(right-left+1)也可以,只不过是偶数个元素时,mid有2个中间值,左右均可
​ if(……)

​ right=mid-1;
​ else if(……)

​ left=mid+1;
​ else

​ return ……;
​ }

2.在排序数组中查找元素的第一个和最后一个位置

题目描述:

给你一个按照非递减顺序排列(趋势要么递增要么不变)的整数数组 nums,和一个目标值 target。请你找出给定目标值在数组中的开始位置和结束位置。

如果数组中不存在目标值 target,返回 [-1, -1]

你必须设计并实现时间复杂度为 O(log n) 的算法解决此问题。

示例 1:

​ 输入:nums = [5,7,7,8,8,10], target = 8
​ 输出:[3,4]

示例 2:

​ 输入:nums = [5,7,7,8,8,10], target = 6
​ 输出:[-1,-1]

示例 3:

​ 输入:nums = [], target = 0
​ 输出:[-1,-1]

提示:

  • 0 <= nums.length <= 105
  • -109 <= nums[i] <= 109
  • nums 是一个非递减数组
  • -109 <= target <= 109

解法一:暴力查找

从前往后枚举每一个元素,将其与目标值进行对比,相同时记为begin,继续向后寻找,直到找到该数的末尾位置记为end。返回begin,end即可。

时间复杂度最差为O(N)。

解法二:二分查找

当数组具有“二段性”时,我们就可以用二分查找算法。接下来我们来寻找该数组的“二段性”.

记左边界为Bleft,右边界为Bright.

1.查找区间的左端点

这里,我们把数组的元素分为两部分——小于target的部分[left,Bleft-1] and 大于等于target的部分[Bleft,right]。

  • 当mid在[left,Bleft-1]的区间,要找左区间,我们可以直接舍去[left,mid],更新left=mid+1;
  • 当mid在[Bleft,right]的区间,要找左区间,我们可以直接舍去[mid+1,right],更新right=mid(因为mid可能是最终结果);
  • 之后在[left,right]上继续寻找左边界。

细节处理:

1.循环条件:

left<right;

  • left=right时,就是最终结果,无需判断;如果判断,就会死循环。

2.求中点的操作:

  • 正确写法:left+(right-left)/2:求的是靠左的位置(向下调整)。

  • 找左端点时求中点要向下取整

    要是向上调整,判断之后,当mid在[Bleft,right]时,要更新right=mid。再进行下一次判断,要是又面对同样的情况,又更新right=mid……又循环往复……

2.查找区间右端点:

这里,我们把数组的元素分为两部分——小于等于target的部分[left,Bright] and 大于target的部分[Bright+1,right]。

  • 当mid在[left,Bright]的区间,要找右区间,我们可以直接舍去[left,mid-1],更新left=mid(因为mid可能是最终结果);
  • 当mid在[Bright+1,right]的区间,要找右区间,我们可以直接舍去[mid,right],更新right=mid-1;
  • 之后在[left,right]上继续寻找右边界。

细节处理:

1.循环条件:

left<right

2.求中点的操作:

  • 正确写法:left+(right-left+1)/2:求的是靠右的位置(向上调整);

  • 找右端点时求中点要向上取整

    要是向下调整,判断之后,当mid落在[left,Bright]时,要更新left=mid。再进行下一次判断,要是又面对同样的情况,又要更新left=mid……又循环往复……

代码实现:
class Solution
{
public:vector<int> searchRange(vector<int>& nums, int target) {// 处理边界情况if(nums.size() == 0) return {-1, -1};int begin = 0;// 1. 二分左端点int left = 0, right = nums.size() - 1;while(left < right){int mid = left + (right - left) / 2;if(nums[mid] < target) left = mid + 1;else right = mid;}// 判断是否有结果if(nums[left] != target) return {-1, -1};else begin = left; // 标记⼀下左端点// 2. 二分右端点left = 0, right = nums.size() - 1;while(left < right){int mid = left + (right - left + 1) / 2;if(nums[mid] <= target) left = mid;else right = mid - 1;}return {begin, right};}
};
查找区间左端点的模版:

while(left < right)
{
int mid = left + (right - left) / 2;
if(……) left = mid + 1;
else right = mid;
}

查找区间右端点的模版:

while(left < right)
{
int mid = left + (right - left + 1) / 2;
if(……) left = mid;
else right = mid - 1;
}

总结切记:分类讨论的代码,就题论题即可。

3.搜索插入位置

题目描述:

给定一个排序数组和一个目标值,在数组中找到目标值,并返回其索引。如果目标值不存在于数组中,返回它将会被按顺序插入的位置。

请必须使用时间复杂度为 O(log n) 的算法。

示例 1:

​ 输入: nums = [1,3,5,6], target = 5
​ 输出: 2

示例 2:

​ 输入: nums = [1,3,5,6], target = 2
​ 输出: 1

示例 3:

​ 输入: nums = [1,3,5,6], target = 7
​ 输出: 4

算法思路:

本题数组是一个排序数组,具有“二段性”时,我们就可以用二分查找算法。

  1. 设插入位置的坐标为x,根据插入位置的特点可以把数组的元素分为两部分——小于target的部分[left , x-1] and 大于等于target的部分[x , right]。
  • 当mid在[left, x-1]的区间,我们可以直接舍去[left, mid],更新left=mid+1;
  • 当mid在[x, right]的区间,我们可以直接舍去[mid+1,right],更新right=mid(因为mid可能是最终结果);
  • 之后在[left,right]上继续查找。
  1. 直到我们的查找区间的长度变为 1 ,也就是 left == right 的时候, left 或者right 所在的位置就是我们要找的结果。

代码实现:

class Solution
{
public:int searchInsert(vector<int>& nums, int target) {int left = 0, right = nums.size() - 1;while(left < right){int mid = left + (right - left) / 2;if(nums[mid] < target) left = mid + 1;else right = mid;}if(nums[left] < target) return right + 1;return right;}
};

4.x 的平方根

题目描述:

给你一个非负整数 x ,计算并返回 x算术平方根

由于返回类型是整数,结果只保留 整数部分 ,小数部分将被 舍去 。

**注意:**不允许使用任何内置指数函数和算符,例如 pow(x, 0.5) 或者 x ** 0.5

示例 1:

​ 输入:x = 4
​ 输出:2

示例 2:

​ 输入:x = 8
​ 输出:2

解释:8 的算术平方根是 2.82842…, 由于返回类型是整数,小数部分将被舍去。

解法一:暴力查找

算法思路:

依次枚举 [0, x] 之间的所有数 i :

  • 如果 i * i == x ,直接返回 x ;

  • 如果 i * i > x ,说明之前的⼀个数是结果,返回 i - 1 。

由于 i * i 可能超过 int 的最大值,因此使用 long long 类型。

代码实现:
class Solution {
public:int mySqrt(int x) {// 由于两个较⼤的数相乘可能会超过 int 最⼤范围// 因此⽤ long longlong long i = 0;for (i = 0; i <= x; i++){// 如果两个数相乘正好等于 x,直接返回 iif (i * i == x) return i;// 如果第⼀次出现两个数相乘⼤于 x,说明结果是前⼀个数if (i * i > x) return i - 1;}// 为了处理oj题需要控制所有路径都有返回值return -1;}
};

解法二:二分查找

本题数组具有“二段性”时,我们就可以用二分查找算法。

算法思路:

这里,我们把数组的元素分为两部分——平方后小于等于x的部分[1,mid] and 平方后大于x的部分[mid-1, x]。

  1. 定义 left , right 指针,分别指向数组的左右区间。

  2. 当left<right时,下列一直循环:

​ 找到待查找区间的中间点 mid ,找到之后分三种情况讨论:

  • mid*mid<=x:更新left=mid
  • mid*mid>x:更新right=mid-1
代码实现:
class Solution
{
public:int mySqrt(int x) {if(x < 1) return 0; // 处理边界情况int left = 1, right = x;while(left < right){long long mid = left + (right - left + 1) / 2; // 防溢出if(mid * mid <= x) left = mid;else right = mid - 1;}return left;}
};

最后,本篇文章到此结束,感觉不错的友友们可以一键三连支持一下笔者,有任何问题欢迎在评论区留言哦~

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/466504.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

数据结构---二叉树(顺序结构),堆(上)

树 树的概念与结构 树是⼀种⾮线性的数据结构&#xff0c;它是由 n&#xff08;n>0&#xff09; 个有限结点组成⼀个具有层次关系的集合。把它叫做树是因为它看起来像⼀棵倒挂的树&#xff0c;也就是说它是根朝上&#xff0c;⽽叶朝下的。 PS 有⼀个特殊的结点&#xff…

blender导入的图片渲染看不见,图片预览正常,但渲染不出

在使用Blender时&#xff0c;我们经常会遇到导入图片后在预览渲染中显示&#xff0c;但在实际渲染时图片消失的问题。本文将提供详细的解决方法&#xff0c;帮助大家解决“Blender导入的图片渲染图像不显示”的问题。 问题原因 导入的图片在Blender中只是一张图&#xff0c;并…

【Spring】Spring Web MVC基础入门~(含大量例子)

阿华代码&#xff0c;不是逆风&#xff0c;就是我疯 你们的点赞收藏是我前进最大的动力&#xff01;&#xff01; 希望本文内容能够帮助到你&#xff01;&#xff01; 目录 一&#xff1a;什么是Spring Web MVC 1&#xff1a;Servlet 2&#xff1a;总结 二&#xff1a;MVC …

使用 Python 调用云 API 实现批量共享自定义镜像

本文介绍如何通过 Python SDK 调用 API 接口&#xff0c;通过子用户批量共享云服务器自定义镜像。若您具备类似需求&#xff0c;或想了解如何使用 SDK&#xff0c;可参考本文进行操作。 前提条件 已创建子用户&#xff0c;并已具备云服务器及云 API 所有权限。 创建子用户请…

element-plus按需引入报错AutoImport is not a function

官网文档&#xff1a;快速开始 | Element Plus webpack配置 // webpack.config.js const AutoImport require(unplugin-auto-import/webpack) const Components require(unplugin-vue-components/webpack) const { ElementPlusResolver } require(unplugin-vue-components…

在 Vue 中实现与优化轮询技术

轮询&#xff08;Polling&#xff09;是一种计算机程序反复检查某个条件或状态的技术&#xff0c;通常用于在一定的时间间隔内不断请求信息或更新数据状态。轮询被广泛应用于前端开发&#xff08;例如实现页面实时更新&#xff09;、后端服务监控、网络设备状态检查等场景。 1…

内核调度抢占模式——voluntary和full对比

一、背景 在之前的内核调度子系统专栏里&#xff0c;我们已经把调度有关的如CFS调度/RT调度&#xff0c;调度时间片&#xff0c;调度时延&#xff0c;cfs唤醒抢占特性&#xff0c;这些基本概念和细节都讲了一遍。其实这些细节更多的是帮助我们理解调度系统是如何运作的&#x…

【网络原理】关于HTTP状态码以及请求的构造的哪些事

前言 &#x1f31f;&#x1f31f;本期讲解关于HTTP协议的重要的机制~~~ &#x1f308;感兴趣的小伙伴看一看小编主页&#xff1a;GGBondlctrl-CSDN博客 &#x1f525; 你的点赞就是小编不断更新的最大动力 &#x1f386;那么废话不…

Day13杨辉三角

给定一个非负整数 numRows&#xff0c;生成「杨辉三角」的前 numRows 行。 在「杨辉三角」中&#xff0c;每个数是它左上方和右上方的数的和。 class Solution {public List<List<Integer>> generate(int numRows) {List<List<Integer>> res new Arra…

Docker基本概念汇总(更全面了解Docker)

Docker是一种开源的平台&#xff0c;用于开发、部署和运行应用程序。它通过“容器”技术实现了轻量级虚拟化&#xff0c;使应用程序和其依赖项能够一起打包、部署并运行。以下是Docker基本概念的详细解释。 图片来源网络 1. Docker 容器&#xff08;Container&#xff09; 容…

OpenCV视觉分析之目标跟踪(8)目标跟踪函数CamShift()使用

操作系统&#xff1a;ubuntu22.04 OpenCV版本&#xff1a;OpenCV4.9 IDE:Visual Studio Code 编程语言&#xff1a;C11 算法描述 找到物体的中心、大小和方向。 CamShift&#xff08;Continuously Adaptive Mean Shift&#xff09;是 OpenCV 中的一种目标跟踪算法&#xff0…

【每日刷题】Day151

【每日刷题】Day151 &#x1f955;个人主页&#xff1a; 开敲&#x1f349; &#x1f525;所属专栏&#xff1a;每日刷题&#x1f34d; &#x1f33c;文章目录&#x1f33c; 【模板】01背包_牛客题霸_牛客网 【模板】01背包_牛客题霸_牛客网 //思路&#xff1a;动态规划 #incl…

学习Vue之商城案例(代码+详解)

目前&#xff0c;我们学习Vue的一些基础的知识&#xff0c;那么就让我们做一个像下图这样简单的商城案例吧。 目录 通过脚手架创建项目 安装axios和bootstrap组件 安装axios和bootstrap 在保存的时候不进行格式化校验 初步定义App.vue文件 初步渲染组件页面 根据接口渲染…

【测试】【Debug】vscode中同一个测试用例出现重复

这种是正常的情况 当下面又出现一个 类似python_test->文件夹名->test_good ->test_pad 同一个测试用例出现两次&#xff0c;名称都相同&#xff0c;显然是重复了。那么如何解决&#xff1f; 这种情况是因为在终端利用“pip install pytest”安装 之后&#xff0c;又…

基于C++的决策树C4.5机器学习算法(不调包)

目前玩机器学习的小伙伴&#xff0c;上来就是使用现有的sklearn机器学习包&#xff0c;写两行代码&#xff0c;调调参数就能跑起来&#xff0c;看似方便&#xff0c;实则有时不利于个人能力发展&#xff0c;要知道现在公司需要的算法工程师&#xff0c;不仅仅只是会调参&#x…

Mac解决 zsh: command not found: ll

Mac解决 zsh: command not found: ll 文章目录 Mac解决 zsh: command not found: ll解决方法 解决方法 1.打开bash_profile 配置文件vim ~/.bash_profile2.在文件中添加配置&#xff1a;alias llls -alF键盘按下 I 键进入编辑模式3. alias llls -alF添加完配置后&#xff0c;按…

VBA10-处理Excel的动态数据区域

end获取数据边界 1、基本语法 1-1、示例&#xff1a; 2、配合row和column使用 2-1、示例1 2-2、示例2 此时&#xff0c;不管这个有数值的区域&#xff0c;怎么增加边界&#xff0c;对应的统计数据也会跟着变的&#xff01;

无人车之路径规划篇

无人车的路径规划是指在一定的环境模型基础上&#xff0c;给定无人车起始点和目标点后&#xff0c;按照性能指标规划出一条无碰撞、能安全到达目标点的有效路径。 一、路径规划的重要性 路径规划对于无人车的安全、高效运行至关重要。它不仅能够提高交通效率&#xff0c;减少交…

【前端基础】CSS基础

目标&#xff1a;掌握 CSS 属性基本写法&#xff0c;能够使用文字相关属性美化文章页。 01-CSS初体验 层叠样式表 (Cascading Style Sheets&#xff0c;缩写为 CSS&#xff09;&#xff0c;是一种 样式表 语言&#xff0c;用来描述 HTML 文档的呈现&#xff08;美化内容&#…

一种高度集成的数字化管理平台:城市管理综合执法系统(源码)

什么是城市管理综合执法系统&#xff1f; 城市管理综合执法系统是一种高度集成的数字化管理平台&#xff0c;它旨在通过整合信息技术资源&#xff0c;实现对城市环境、秩序、设施等多方面的综合管理和高效执法。 城市管理综合执法系统通常包含以下几个核心要素和功能&#xff…