深度学习:微调(Fine-tuning)详解

微调(Fine-tuning)详解

微调(Fine-tuning)是机器学习中的一个重要概念,特别是在深度学习和自然语言处理(NLP)领域。该过程涉及调整预训练模型的参数,以适应特定的任务或数据集。以下详细解释微调的目的、步骤和重要性,以及如何在实际操作中应用。

微调的目的

微调的主要目的是利用预训练模型在大规模数据集上学习到的丰富特征,迅速适应新的任务或数据集。预训练模型通常在大量数据上训练,从而捕获深层次、广泛的特征,这些特征可以适用于多种任务。通过微调,这些模型能够以较小的成本迅速适应新任务,提高模型在特定任务上的表现。

微调的步骤

  1. 选择合适的预训练模型:根据目标任务的性质,选择一个在相似任务或大量通用数据上预训练过的模型。例如,自然语言处理任务常用BERT或GPT系列模型。

  2. 准备任务特定数据:虽然预训练模型在广泛数据上训练,但微调需要针对特定任务准备标注数据。这些数据不需要像预训练阶段那样庞大,但必须足够代表目标任务。

  3. 参数调整策略

    • 冻结与解冻:根据任务的复杂度和数据量,决定是冻结预训练模型的部分参数,还是对所有参数进行微调。对于数据量较小的任务,可能需要冻结一些层的参数以避免过拟合。
    • 学习率选择:微调通常使用比预训练阶段更小的学习率,以避免破坏模型原有的有用特征。
  4. 微调训练:在特定任务的数据上继续训练模型。这一步骤中,模型参数通过反向传播和梯度下降方法进行更新,以最小化任务特定的损失函数。

  5. 评估与调整:在独立的验证集上评估微调后的模型性能。根据性能结果调整模型的参数或训练策略,如修改学习率、增加正则化等。

微调的重要性

  • 节省资源:通过利用预训练模型,微调能够显著减少资源消耗,尤其是在计算资源和时间上。
  • 提高性能:预训练模型已经学习到了大量的通用特征,微调能够在此基础上快速提升模型在特定任务上的表现。
  • 适应性强:微调使模型能够适应各种各样的任务,从而提高模型的灵活性和实用性。

实际应用

在实际应用中,如自然语言处理的情感分析、图像识别的种类划分等任务,微调已成为快速获得高性能模型的关键步骤。这不仅加快了研究和开发的速度,也大大降低了数据标注的需求。

总之,微调是现代深度学习工作流中一个不可或缺的步骤,它允许研究人员和工程师以较低成本将先进的预训练模型迅速适应各种特定任务,实现在特定领域的突破。

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/467515.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

大健康零售行业帮助中心的构建与客户服务优化

在大健康零售行业,客户服务的质量直接影响着企业的品牌形象和市场竞争力。随着数字化转型的推进,构建一个高效、智能的帮助中心成为了提升客户服务和满意度的关键。本文将分析大健康零售行业如何通过构建帮助中心来优化客户服务,并提升客户满…

想买开放式耳机如何挑选?5款高人气开放式耳机分享

很多人不知道的是,目前开放式耳机市场上,有90%的品牌都不是专业的开放式耳机品牌,跨界的大牌以及网红品牌占据了主流市场,这些品牌通常都是直接使用传统的声学技术直接应用在开放式耳机上,没有专门针对开放式环境的技术…

linux 通过apt安装软件包时出现依赖包版本不对的问题解决

通过网上查找解决办法时,发现的解决办法无法完美解决问题: 比如通过安装对应版本解决 如: sudo apt-get install xxx2.7.0ubuntu 这样会先卸载原先包,在安装对应版本的包 或者直接删除依赖的包 sudo apt-get purge xxxx 如果碰到底层包的话&#xf…

证件照尺寸168宽240高,如何手机自拍更换蓝底

在提供学籍照片及一些社会化考试报名时,会要求我们提供尺寸为168*240像素的电子版证件照,本文将介绍如何使用“报名电子照助手”,借助手机拍照功能完成证件照的拍摄和背景更换,特别是如何将照片尺寸调整为168像素宽和240像素高&am…

深度学习⑨GANs

Discriminative and Generative Models Deep learning中主要两种模型 判别模型专注于从输入预测输出,例如分类任务。学习数据点和标签之间的特征 生成模型则试图理解数据是如何产生的,能够生成新的数据样本。理解数据分布和是否可以被预测 Quiz time: Discriminative mo…

Hbase集群搭建

1. 环境 三台节点hadoop 集群zookeeper 集群hbase 1.1环境准备 使用前文hdfs三台节点 1.11 zookeeper搭建 下载 wget https://dlcdn.apache.org/zookeeper/zookeeper-3.8.4/apache-zookeeper-3.8.4-bin.tar.gz解压 tar -zxvf apache-zookeeper-3.8.4-bin.tar.gz zookee…

jupyter notebook启动和单元格cell

一、jupyter notebook启动 1. 数据分析传统与进阶的区别 - 传统数据分析工具: 1. SPSS 2. EXCEL 3. POWERBI - 进阶数据分析:Python处理数据功能 1. 数据处理(python处理数据功能)coding 2. 富文…

【芯智雲城】Sigmastar星宸科技图传编/解码方案

一、图传技术简介 图传是指将图像或媒体内容从一个设备传输到另外一个设备的技术,传输的媒介可以是无线电波、光纤、以太网等。图传系统主要由图像采集设备、传输设备和接收设备组成,图像采集设备负责采集实时图像,传输设备将采集到的图像转…

【HGT】文献精讲:Heterogeneous Graph Transformer

【HGT】文献精讲:Heterogeneous Graph Transformer 标题: Heterogeneous Graph Transformer (异构图Transformer) 作者团队: 加利福尼亚大学Yizhou Sun 摘要: 近年来,图神经网络(GN…

AI 写作(三)文本生成算法:创新与突破(3/10)

一、生成式与判别式模型:AI 写作的基石 (一)区别与特点 生成式模型和判别式模型在多个方面存在明显差异。在优化准则上,生成式模型致力于学习联合概率分布,而判别式模型则专注于建立输入数据和输出之间的关系&#xf…

蓝桥杯 懒洋洋字符串--字符串读入

题目 代码 #include <iostream>using namespace std;int main(){int n;cin>>n;char s[210][4];int ans0;for(int i0;i<n;i){scanf("%s",s[i]);}for(int i0;i<n;i){char as[i][0];char bs[i][1];char cs[i][2];// cout<<a<< <<b…

小红书图文矩阵的运营策略与引流技巧解析

内容概要 小红书图文矩阵是一种高效的内容运营方式&#xff0c;能够帮助品牌在竞争激烈的环境中脱颖而出。通过构建矩阵账号&#xff0c;品牌可以实现多维度的内容覆盖&#xff0c;创造出丰富而立体的用户体验。为什么要做图文矩阵&#xff1f;首先&#xff0c;这种方式能够提…

2.Python解释器

python解释器程序&#xff0c;用来翻译python代码&#xff0c;并提交给计算机执行。 上一篇博客就是安装了python解释器程序 写一个python文件&#xff0c;在文件中写入多行代码并执行&#xff1a; 进入python后&#xff0c;输入exit()命令退出

书生实战营第四期-基础岛第四关-InternLM + LlamaIndex RAG 实践

一、任务要求1 基于 LlamaIndex 构建自己的 RAG 知识库&#xff0c;寻找一个问题 A 在使用 LlamaIndex 之前 浦语 API 不会回答&#xff0c;借助 LlamaIndex 后 浦语 API 具备回答 A 的能力&#xff0c;截图保存。 1、配置开发机系统 镜像&#xff1a;使用 Cuda12.0-conda 镜…

【路径规划】PID搜索算法PSA求解UAV路径规划

摘要 本文研究了基于PID搜索算法&#xff08;PID Search Algorithm, PSA&#xff09;求解无人机&#xff08;UAV&#xff09;路径规划问题。通过引入PID控制思想来控制路径生成过程&#xff0c;使得无人机可以避开障碍物并在复杂地形中寻找最优路径。实验结果表明&#xff0c;…

编写第一个 Appium 测试脚本:从安装到运行!

前言 最近接到一个测试项目&#xff0c;简单描述一下&#xff0c;需求就是&#xff1a;一端发送指令&#xff0c;另一端接受指令并处理指令。大概看了看有上百条指令&#xff0c;点点点岂不是废了&#xff0c;而且后期迭代&#xff0c;每次都需要点点点&#xff0c;想想就头大…

劫持微信聊天记录并分析还原 —— 访问数据库并查看聊天记录(五)

本工具设计的初衷是用来获取微信账号的相关信息并解析PC版微信的数据库。程序以 Python 语言开发&#xff0c;可读取、解密、还原微信数据库并帮助用户查看聊天记录&#xff0c;还可以将其聊天记录导出为csv、html等格式用于AI训练&#xff0c;自动回复或备份等等作用。下面我们…

微软日志丢失事件敲响安全警钟

NEWS | 事件回顾 最近&#xff0c;全球最大的软件公司之一——微软&#xff0c;遭遇了一场罕见的日志丢失危机。据报告&#xff0c;从9月2日至9月19日&#xff0c;持续长达两周的时间里&#xff0c;微软的多项核心云服务&#xff0c;包括身份验证平台Microsoft Entra、安全信息…

音视频入门基础:H.264专题(17)——FFmpeg源码中,获取H.264视频的profile的实现

音视频入门基础&#xff1a;H.264专题系列文章&#xff1a; 音视频入门基础&#xff1a;H.264专题&#xff08;1&#xff09;——H.264官方文档下载 音视频入门基础&#xff1a;H.264专题&#xff08;2&#xff09;——使用FFmpeg命令生成H.264裸流文件 音视频入门基础&…

硬件基础06 滤波器——无源、有源(含Filter Solutions、Filter Pro、MATLAB Fdatool)

目录 一、Filter Solutions 1、软件资源及安装教程如下 2、使用相关内容 二、Filter Pro使用 1、软件资源及安装教程如下 2、使用相关内容 三、MATLAB Fdatool 1、在matlab命令中输入fdatool 2、输入相关参数&#xff0c;例如低通、FIR、20阶、hamming窗 3、调用 &am…