大语言模型LLMs在医学领域的最新进展总结

我是娜姐 @迪娜学姐 ,一个SCI医学期刊编辑,探索用AI工具提效论文写作和发表。

图片

         

相比其他学科,医学+AI,是发表学术成果最多的领域。

医学数据的多样性和复杂性(包括文本、图像、基因组数据等),使得传统的数据分析方法难以全面整合和解析。

而大语言模型,特别是多模态模型,可以综合分析不同类型的数据,建立跨模态关联,提供从文本到影像的深度理解。       

这篇文章,娜姐用主题检索的方式,总结了近一年来,医学领域大模型的研究进展。主要分为辅助诊断、药物研发、基因组学、医患沟通等方面。

图片

图1 生物医学领域LLMs的发展概览。从左到右,展示了单模态(绿色部分)和多模态(粉色部分)模型随时间的研究进展【1】。

一、LLM在医学细分领域的研究进展:

1 医学影像辅助诊断:
 

哈佛大学生物医学信息学助理教授余坤兴2024年9月发表在Nature上的成果【2】,他们团队开发了一款临床组织病理学成像评估基础模型(CHIEF,Clinical Histopathology Imaging Evaluation Foundation)。该CHIEF模型能够对源于肺、乳腺、前列腺、结直肠、胃、食道、肾、脑、肝、甲状腺、胰腺、宫颈、子宫、卵巢、睾丸、皮肤、软组织、肾上腺和膀胱等组织的19 种癌症进行诊断,检测准确率接近 94%。

          

团队正在与业界合作,希望将 CHIEF 模型发展为临床辅助诊断工具,并在准备 FDA 的相关审批工作。    

          

图片

图2 CHIEF 模型概述(来源:Nature,【2】)

美国商业公司Paige研发的病理学基础模型Virchow,能够实现泛癌症检测,在九种常见癌症和七种罕见癌症中,样本级接收者操作特征曲线下面积达到 0.95。此外,在训练数据较少的情况下,Virchow也能够实现与生产中的组织特异性临床级模型相似的性能,并在某些罕见癌症变种上超越它们【3】。

哈佛大学医学院研究团队近期开发了一个用于人类病理学切片鉴定的视觉语言通用 AI 助手——PathChat。该系统通过自我监督学习对来自 100 万多张切片的图像片段进行预训练,能够从活检切片中正确识别疾病,准确率近 90%,超越GPT-4V。    

图片

图3 PathChat 的训练和构建过程。(来源:Nature,【4】)

          

SkinGPT-4,是一个基于多模态大型语言模型的互动皮肤病诊断系统。基于Llama-2-13b-chat大型语言模型,通过52,929 张病理图像及临床概念进行训练。用户可以上传自己的皮肤照片进行诊断。系统自主评估图像,识别皮肤状况的特征和类别,进行深入分析,并提供互动治疗建议【5】。

图片

图4 SkinGPT-4 是一个基于多模态大型语言模型的互动皮肤病诊断系统。(来源:Nature Communications,【5】)    

          

中山大学附属第一医院针对甲状腺结节影像及病理评估的一项实验表明,725 名患者中的 1161 幅甲状腺结节的影像诊断对比,ChatGPT 4.0 和 Bard 显示出显著到几乎完美的内部一致性,与两名高级影像师和一名初级影像师的人机交互策略相当,并超过了仅有一名初级影像师的人机交互策略【6】。

          

中国学者开发的肺尘病诊断大模型PneumoLLM,开辟了针对数据稀缺的职业病应用LLMs的新范式,通过广泛的实验展示了大模型在诊断尘肺病方面的优越性【7】。

          

          

2 药物开发

浙江大学人工智能医学创新研究院开发了LEDAP模型,利用了基于LLM的生物文本特征编码来预测药物-疾病关联、药物-药物相互作用和药物-副作用关联。LEDAP 在与其他流行的 DBA 分析工具相比时展示了其显著的竞争力【8】。 

          

哈佛医学院研究人员开发的TxGNN 模型,在涵盖 17,080 种疾病的疾病机制和 7,957 种药物的作用机制的医学知识图谱上进行训练,旨在解决现有药物的新应用,为治疗选择有限且分子数据稀缺的疾病识别候选药物【9】。

              

图片

图5 TxGNN:该几何深度学习模型结合了一个庞大而全面的生物知识图谱,以准确预测任何给定疾病-药物对的适应症或禁忌症的可能性,适用于老药新用途的开发。(来源:Nature Medicine【9】)    

          

中国科学技术大学联合微软研究院,开发了 TamGen--一种采用类似 GPT 的化学语言模型的方法,能够实现靶向感知的分子生成和化合物精炼。将 TamGen 集成到药物发现流程中,并识别出 14 种对结核病 ClpP 蛋白酶表现出显著抑制活性的化合物,其中最有效的化合物的半最大抑制浓度(IC50)为 1.9 μM【10】。

          

理解化学干扰的转录响应对于药物发现至关重要。中科院计算技术研究所联合合作者,开发了PRnet深度生成模型,能够预测从未在大规模和单细胞水平上进行实验干扰的新化学扰动的转录响应(transcriptional response)。PRnet 使基因水平的响应解释和基于基因特征的计算药物筛选成为可能。PRnet 生成了一个大规模的扰动特征整合图谱,涵盖 88 个细胞系、52 种组织和各种化合物库。并成功推荐了 233 种疾病的药物候选者【11】。    

          

化疗和靶向治疗中,药物耐药性是一个关键挑战。佛罗里达大学团队提出的DrugFormer 模型,整合了序列化基因标记和基于基因的知识图谱,以高精度预测单细胞水平的药物耐药性。来自不同癌症类型的全面单细胞数据分析突显了 DrugFormer 在识别耐药细胞和揭示潜在分子机制方面的有效性【12】。

图片

图6 DrugFormer 模型的整体框架。(图源:Advanced science)

          

3 基因组学    

          

布朗大学团队开发了多模态深度学习模型 EPBDxDNABERT-2。使用包含 690 个 ChIP-seq 实验结果的染色质免疫沉淀测序(ChIP-Seq)数据进行训练, EPBDxDNABERT-2 显著提高了 660 多个 TF-DNA 的预测,揭示了在全基因组关联研究中发现的与疾病相关的非编码变异的机制【13】。

图片

图7 EPBDxDNABERT-2的构建过程。

          

受大型语言模型的启发,北京理工大学邵斌等开发了一种用于基因组的长上下文生成模型megaDNA。模型的基础能力,包括预测必需基因、遗传变异效应、调控元件活性以及未注释序列的分类。此外,它能够生成长度达到 96 K 碱基对的 de novo 序列,这些序列包含潜在的调控元件和具有噬菌体相关功能的注释蛋白【14】。该生成基因组模型代表了全功能基因组从零开始设计的第一步。

          

Memorial Sloan Kettering癌症中心报告了一种基于遗传,而非组织病理学数据训练的人工智能算法的构建,该算法能够准确分类浸润性乳腺癌(ILCs)并揭示 CDH1 失活机制,为开发应用于全切片图像的诊断人工智能模型提供了正交真实数据利用的基础。揭示了与强基因型-表型相关性相关的遗传改变可用于开发应用于病理学的人工智能系统,从而促进癌症诊断和生物学发现【15】。    

          

肽在许多生物活动中发挥着关键作用,是药物设计中有前景的候选者。然而,准确预测蛋白质-肽结合亲和力仍是一项挑战。针对这一问题,北京工业大学团队开发了一种基于卷积神经网络和多头注意力的预测模型 PepPAP,该模型仅依赖于序列特征。PepPAP可用于广泛基因组蛋白-肽结合亲和力预测,并有潜力为基于肽的药物设计提供有价值的见解【16】。

          

4 其他
 

对于肌萎缩侧索硬化症(ALS)患者来说,眼动追踪技术使用户能够利用键盘,输入文本以进行语音输出和电子消息传递。但是效率仍远低于语言交流。谷歌及合作者团队利用微调的LLMs和对话上下文,开发了一种名为 SpeakFaster 的文本输入用户界面,将高度缩写的英语文本扩展为所需的完整短语,具有非常高的准确性。与传统基线相比,文本输入速度显著提高(29-60%)并节省了运动动作【17】。

              

图片

图8 SpeakFaster 用户界面。(来源:Nature Communications 【17】)

          

          

医患沟通

2024年7月,中国医学科学院基础医学研究所龙尔平团队与耶鲁大学陈庆宇合作,基于35418例真实导诊对话信息形成的知识库作为训练数据,构建了SSPEC导诊大模型【18】。相比人类导诊,SSPEC在事实性、安全性、共情能力均展现出明显优势,在真实应用场景中,降低了11.2%的重复沟通和5.4%的医患冲突比例。

          

          

二、LLM在医疗领域的优势总结

  • LLM 在医学中带来了更准确的诊断和预测,促进了早期疾病检测和个性化治疗计划的制定。

  • 为医生提供实时决策支持和更新的医学知识,从而优化临床决策过程。

  • 个性化治疗方案并促进药物开发,为患者提供更精确的治疗选择和用药选择。

  • LLM有潜力增强患者管理和医疗流程,提高医疗效率和患者护理质量。

  • LLM可以支持医学教育和医疗知识的传播,促进医学生和从业者的持续学习和改进。

          

三、挑战:

在生物医学研究中整合LLM带来了机遇,同时也提出了重要的伦理考虑。包括:

潜在的算法偏见;

在人工智能辅助的临床决策中的知情同意;

医疗责任和法律责任问题;

对数据所有权和隐私的担忧。

应对这些挑战需要人工智能研究人员、医疗专业人员、伦理学家和政策制定者之间的合作,以制定稳健的指导方针和监管框架。

总的来说,LLM正成为医学创新的新引擎。ChatGPT等通用模型已展现出卓越的推理和分析洞察能力,随着垂直领域模型的不断深化,未来智能助手将切实融入医生的日常实践,为诊疗质量和效率的提升提供有力支撑。

          

参考文献:

1 Wang, C., Li, M., He, J., Wang, Z., Darzi, E., Chen, Z., Ye, J., Li, T., Su, Y., Ke, J., Qu, K., Li, S., Yu, Y., Liò, P., Wang, T., Wang, Y.G., & Shen, Y. (2024). A Survey for Large Language Models in Biomedicine. ArXiv, abs/2409.00133. 

2 Wang, X., Zhao, J., Marostica, E. et al. A pathology foundation model for cancer diagnosis and prognosis prediction. Nature (2024). https://doi.org/10.1038/s41586-024-07894-z

3 Vorontsov, E., Bozkurt, A., Casson, A., Shaikovski, G., Zelechowski, M., Severson, K., Zimmermann, E., Hall, J., Tenenholtz, N., Fusi, N., Yang, E., Mathieu, P., van Eck, A., Lee, D., Viret, J., Robert, E., Wang, Y. K., Kunz, J. D., Lee, M. C. H., Bernhard, J. H., … Fuchs, T. J. (2024). A foundation model for clinical-grade computational pathology and rare cancers detection. Nature medicine, 30(10), 2924–2935. https://doi.org/10.1038/s41591-024-03141-0

4 Lu, M. Y., Chen, B., Williamson, D. F. K., Chen, R. J., Zhao, M., Chow, A. K., Ikemura, K., Kim, A., Pouli, D., Patel, A., Soliman, A., Chen, C., Ding, T., Wang, J. J., Gerber, G., Liang, I., Le, L. P., Parwani, A. V., Weishaupt, L. L., & Mahmood, F. (2024). A multimodal generative AI copilot for human pathology. Nature, 634(8033), 466–473. https://doi.org/10.1038/s41586-024-07618-3          

5 Zhou, J., He, X., Sun, L., Xu, J., Chen, X., Chu, Y., Zhou, L., Liao, X., Zhang, B., Afvari, S., & Gao, X. (2024). Pre-trained multimodal large language model enhances dermatological diagnosis using SkinGPT-4. Nature communications, 15(1), 5649. https://doi.org/10.1038/s41467-024-50043-3

6 Wu, S. H., Tong, W. J., Li, M. D., Hu, H. T., Lu, X. Z., Huang, Z. R., Lin, X. X., Lu, R. F., Lu, M. D., Chen, L. D., & Wang, W. (2024). Collaborative Enhancement of Consistency and Accuracy in US Diagnosis of Thyroid Nodules Using Large Language Models. Radiology, 310(3), e232255. https://doi.org/10.1148/radiol.232255    

7 Song, M., Wang, J., Yu, Z., Wang, J., Yang, L., Lu, Y., Li, B., Wang, X., Wang, X., Huang, Q., Li, Z., Kanellakis, N. I., Liu, J., Wang, J., Wang, B., & Yang, J. (2024). PneumoLLM: Harnessing the power of large language model for pneumoconiosis diagnosis. Medical image analysis, 97, 103248. https://doi.org/10.1016/j.media.2024.103248

8 Zhang, H., Zhou, Y., Zhang, Z., Sun, H., Pan, Z., Mou, M., Zhang, W., Ye, Q., Hou, T., Li, H., Hsieh, C. Y., & Zhu, F. (2024). Large Language Model-Based Natural Language Encoding Could Be All You Need for Drug Biomedical Association Prediction. Analytical chemistry, 10.1021/acs.analchem.4c01793. Advance online publication. https://doi.org/10.1021/acs.analchem.4c01793          

9 Huang, K., Chandak, P., Wang, Q. et al. A foundation model for clinician-centered drug repurposing. Nat Med (2024). https://doi.org/10.1038/s41591-024-03233-x

10 Wu, K., Xia, Y., Deng, P., Liu, R., Zhang, Y., Guo, H., Cui, Y., Pei, Q., Wu, L., Xie, S., Chen, S., Lu, X., Hu, S., Wu, J., Chan, C. K., Chen, S., Zhou, L., Yu, N., Chen, E., Liu, H., … Liu, T. Y. (2024). TamGen: drug design with target-aware molecule generation through a chemical language model. Nature communications, 15(1), 9360. https://doi.org/10.1038/s41467-024-53632-4   

11 Qi, X., Zhao, L., Tian, C., Li, Y., Chen, Z. L., Huo, P., Chen, R., Liu, X., Wan, B., Yang, S., & Zhao, Y. (2024). Predicting transcriptional responses to novel chemical perturbations using deep generative model for drug discovery. Nature communications, 15(1), 9256. https://doi.org/10.1038/s41467-024-53457-1

12 Liu, X., Wang, Q., Zhou, M., Wang, Y., Wang, X., Zhou, X., & Song, Q. (2024). DrugFormer: Graph-Enhanced Language Model to Predict Drug Sensitivity. Advanced science (Weinheim, Baden-Wurttemberg, Germany), 11(40), e2405861. https://doi.org/10.1002/advs.202405861

13 Kabir, A., Bhattarai, M., Peterson, S., Najman-Licht, Y., Rasmussen, K. Ø., Shehu, A., Bishop, A. R., Alexandrov, B., & Usheva, A. (2024). DNA breathing integration with deep learning foundational model advances genome-wide binding prediction of human transcription factors. Nucleic acids research, 52(19), e91. https://doi.org/10.1093/nar/gkae783

14 Shao, B., & Yan, J. (2024). A long-context language model for deciphering and generating bacteriophage genomes. Nature communications, 15(1), 9392. https://doi.org/10.1038/s41467-024-53759-4

15 Pareja, F., Dopeso, H., Wang, Y. K., Gazzo, A. M., Brown, D. N., Banerjee, M., Selenica, P., Bernhard, J. H., Derakhshan, F., da Silva, E. M., Colon-Cartagena, L., Basili, T., Marra, A., Sue, J., Ye, Q., Da Cruz Paula, A., Yeni Yildirim, S., Pei, X., Safonov, A., Green, H., … Reis-Filho, J. S. (2024). A Genomics-Driven Artificial Intelligence-Based Model Classifies Breast Invasive Lobular Carcinoma and Discovers CDH1 Inactivating Mechanisms. Cancer research, 84(20), 3478–3489. https://doi.org/10.1158/0008-5472.CAN-24-1322    

16 Sun, X., Wu, Z., Su, J., & Li, C. (2024). A deep attention model for wide-genome protein-peptide binding affinity prediction at a sequence level. International journal of biological macromolecules, 276(Pt 2), 133811. https://doi.org/10.1016/j.ijbiomac.2024.133811          

17 Cai, S., Venugopalan, S., Seaver, K., Xiao, X., Tomanek, K., Jalasutram, S., Morris, M. R., Kane, S., Narayanan, A., MacDonald, R. L., Kornman, E., Vance, D., Casey, B., Gleason, S. M., Nelson, P. Q., & Brenner, M. P. (2024). Using large language models to accelerate communication for eye gaze typing users with ALS. Nature communications, 15(1), 9449. https://doi.org/10.1038/s41467-024-53873-3

18 Wan, P., Huang, Z., Tang, W. et al. Outpatient reception via collaboration between nurses and a large language model: a randomized controlled trial. Nat Med 30, 2878–2885 (2024). https://doi.org/10.1038/s41591-024-03148-7

本文来自互联网用户投稿,该文观点仅代表作者本人,不代表本站立场。本站仅提供信息存储空间服务,不拥有所有权,不承担相关法律责任。如若转载,请注明出处:http://www.rhkb.cn/news/468056.html

如若内容造成侵权/违法违规/事实不符,请联系长河编程网进行投诉反馈email:809451989@qq.com,一经查实,立即删除!

相关文章

服务器被病毒入侵如何彻底清除?

当服务器遭遇病毒入侵时,彻底清除病毒是确保系统安全和数据完整性的关键步骤。这一过程不仅需要技术上的精准操作,还需要严密的计划、合理的资源调配以及后续的防范措施。以下是一篇关于如何在服务器被病毒入侵时彻底清除病毒的详细指南。 一、初步响应与…

Javascript中如何实现函数缓存?函数缓存有哪些应用场景?

#一、是什么 函数缓存,就是将函数运算过的结果进行缓存 本质上就是用空间(缓存存储)换时间(计算过程) 常用于缓存数据计算结果和缓存对象 解释 const add (a,b) > ab; const calc memoize(add); // 函数缓存…

基于LLaMA-Factory微调Llama3

本文简要介绍下基于LLaMA-Factory的llama3 8B模型的微调过程 环境配置 # 1. 安装py3.10虚拟环境 conda create -n py3.10-torch2.2 python3.10 source activate conda activate py3.10-torch2.2# 2. 安装cuda12.2 gpu版torch2.2 conda install pytorch2.2.2 torchvision0.17.…

学习记录:js算法(九十):N皇后

文章目录 N 皇后思路一 N 皇后 按照国际象棋的规则,皇后可以攻击与之处在同一行或同一列或同一斜线上的棋子。 n 皇后问题 研究的是如何将 n 个皇后放置在 nn 的棋盘上,并且使皇后彼此之间不能相互攻击。 给你一个整数 n ,返回所有不同的 n 皇…

RTC精度及校准

RTC精度偏差: RTC的基准时间和精度与石英晶体的频率相关,晶体的谐振频率取决于温度,因此RTC性能与温度相关,晶体的频率偏差是晶体正常频率的温度反转函数。 一、硬件方面: 1.使用高精度振荡器的RTC模块; …

Axure PR 9 多级下拉选择器 设计交互

​ 大家好,我是大明同学。 Axure选择器是一种在交互设计中常用的组件,这期内容,我们来探讨Axure中多级下拉选择器设计与交互技巧。 下拉列表选择输入框元件 创建选择输入框所需的元件 1.在元件库中拖出一个矩形元件。 2.选中矩形元件&…

【设计模式系列】享元模式(十五)

目录 一、什么是享元模式 二、享元模式的角色 三、享元模式的典型应用场景 四、享元模式在ThreadPoolExecutor中的应用 1. 享元对象(Flyweight)- 工作线程(Worker) 2. 享元工厂(Flyweight Factory)- …

LeetCode热题100之贪心算法

1.买卖股票的最佳时机 思路分析:即需要找出某一天的最低价格和它后面几天的最高价格差。 维护一个变量min_price,表示到目前为止遇到的最低股票价格;遍历prices数组,在每一天的价格上: 更新min_price为当前的价格和mi…

git 对已提交的说明进行编辑

如果提交代码的时候,对上次提交代码的说明不准确的话,例如 1、可以使用 git log 查看代码提交的记录; 2、使用 git commit --amend 命令对上次提交的说明进行编辑: 当显示上次提交的内容的时候,按下键盘 i 键即可编辑…

Hive简介 | 体系结构

Hive简介 Hive 是一个框架,可以通过编写sql的方式,自动的编译为MR任务的一个工具。 在这个世界上,会写SQL的人远远大于会写java代码的人,所以假如可以将MR通过sql实现,这个将是一个巨大的市场,FaceBook就这…

四期书生大模型实战营(【基础岛】- 第1关 | 书生·浦语大模型开源开放体系)

文章目录 1. 性能提升、推理能力领先1.1. 书生浦语开源时间线1.1.1. 时间节点1.1.2. InternLM性能天梯 1.2. 模型亮点1.2.1. 推理能力1.2.2. 长文本支持1.2.3. 复杂任务的自动规划与搜索 1.3. 核心技术思路 2. 支持多模态预训练与微调2.1. 开源模型谱系2.2. 核心优势 3. 书生浦…

python之正则表达式总结

正则表达式 对于正则表达式的学习,我整理了网上的一些资料,希望可以帮助到各位!!! 我们可以使用正则表达式来定义字符串的匹配模式,即如何检查一个字符串是否有跟某种模式匹配的部分或者从一个字符串中将与…

Jmeter的安装,设置中文,解决乱码问题

1.Jmeter安装 1-Jmeter如何下载 1---我这里提供一个下载快的方式 https://www.123684.com/s/lWZKVv-4jiav?提取码:4x4y 2---Jmeter官网下载地址 Apache JMeter - Download Apache JMeter 2-配置java环境 1---下载javaJDK 官方下载地址 https://www.oracle.com/java/techno…

机器学习(七)——集成学习(个体与集成、Boosting、Bagging、随机森林RF、结合策略、多样性增强、多样性度量、Python源码)

目录 关于1 个体与集成2 Boosting3 Bagging与随机森林4 结合策略5 多样性X 案例代码X.1 分类任务-Adaboost-SVMX.1.1 源码X.1.2 数据集(鸢尾花数据集)X.1.3 模型效果 X.2 分类任务-随机森林RFX.2.1 源码X.2.2 数据集(鸢尾花数据集&#xff09…

融合虚拟与现实,AR Engine为用户提供沉浸式交互体验

当今的应用市场中,传统的应用产品已经难以完全满足消费者的多样化需求。为了在竞争激烈的市场中脱颖而出,企业需要深入洞察用户需求,提供个性化的服务体验和差异化的产品创新,以吸引并留住消费者。 比如,购物类App通过…

「QT」几何数据类 之 QPolygon 多边形类

✨博客主页何曾参静谧的博客📌文章专栏「QT」QT5程序设计📚全部专栏「VS」Visual Studio「C/C」C/C程序设计「UG/NX」BlockUI集合「Win」Windows程序设计「DSA」数据结构与算法「UG/NX」NX二次开发「QT」QT5程序设计「File」数据文件格式「PK」Parasolid…

.NET 一款替代cmd.exe的交互式命令渗透工具

01阅读须知 此文所提供的信息只为网络安全人员对自己所负责的网站、服务器等(包括但不限于)进行检测或维护参考,未经授权请勿利用文章中的技术资料对任何计算机系统进行入侵操作。利用此文所提供的信息而造成的直接或间接后果和损失&#xf…

跨境访问难题?SD-WAN跨境加速专线加速电商社交媒体推广

在全球化日益加深的今天,跨境电商已成为企业拓展国际市场的重要途径。然而,跨境电商在社交媒体平台进行推广时,常常面临一系列网络访问难题,如公网速度慢、员工办事效率低下、IP被封禁以及公司运维对网络维护的繁琐等。这些问题不…

让redis一直开启服务/自动启动

文章目录 你的redis是怎么打开的黑窗不能关?必须要自动启动吗?再说说mysql 本文的所有指令都建议在管理员权限下打开cmd控制台 推荐的以管理员身份打开控制台的方式 Win R 打开运行 输入cmdShift Ctrl Enter 你的redis是怎么打开的 安装过redis的朋友都知道, redis的安…

Python 分子图分类,GNN Model for HIV Molecules Classification,HIV 分子图分类模型;整图分类问题,代码实战

一、分子图 分子图(molecular graph)是一种用来表示分子结构的图形方式,其中原子被表示为节点(vertices),化学键被表示为边(edges)。对于HIV(人类免疫缺陷病毒&#xff…